

Cath Lab Room 1 Equipment Replacement CHRISTUS Health Southeast Texas - St. Elizabeth

2830 Calder Avenue Beaumont, 77702

> May 17, 2022 Project No. 20132

Construction Manager 2898 W Cedar St Beaumont, Texas 77702 409 838-3006

350 Pine Street, Suite 720 Beaumont, Texas 77701 409 866-7196

Division	Section Title	Pages

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

000101 PROJECT TITLE PAGE

General Requirements Subgroup

DIVISION 01 - GENERAL REQUIREMENTS

011000	SUMMARY	3
012900	PAYMENT PROCEDURES	3
013300	SUBMITTAL PROCEDURES	7
017700	CLOSEOUT PROCEDURES	5
017823	OPERATION AND MAINTENANCE DATA	7
017839	PROJECT RECORD DOCUMENTS	4

Facility Construction Subgroup

- DIVISION 02 EXISTING CONDITIONS
- 024119 SELECTIVE DEMOLITION

4

1

DIVISION 03 - CONCRETE

NOT APPLICABLE

DIVISION 04 - MASONRY

NOT APPLICABLE

DIVISION 05 - METALS

055000	MEDICAL EQUIPMENT SUPPORT SYSTEM UNISTRUT	8
DIVISION 06	- WOOD, PLASTICS, AND COMPOSITES	
064116	PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS	5
DIVISION 07	- THERMAL AND MOISTURE PROTECTION	
NOT APPLICA	BLE	
DIVISION 08	- OPENINGS	
081416	FLUSH WOOD DOORS	5
085113	ALUMINUM WINDOWS	2
087100	DOOR HARDWARE	5
DIVISION 09	- FINISHES	
092900	GYPSUM BOARD	4
095123	ACOUSTICAL TILE CEILINGS	2
096516.23	VINYL SHEET FLOORING	9
099123	INTERIOR PAINTING	5
DIVISION 10	- SPECIALTIES	
102600	WALL AND DOOR PROTECTION	4
DIVISION 11	- EQUIPMENT	

NOT APPLICABLE

DIVISION 12 - FURNISHINGS

NOT APPLICABLE

DIVISION 13 - SPECIAL CONSTRUCTION

NOT APPLICABLE

DIVISION 14 - CONVEYING EQUIPMENT

NOT APPLICABLE

DIVISION 15 - RESERVED

NOT APPLICABLE

PROJECT NAME:	<u>CHRISTUS CATH LAB</u> BEAUMONT, TX
ARCHITECT:	Architectural Alliance
PROJECT NO.:	21197.00

TABLE OF CONTENTS

Mechanical Sections:

- DIVISION 21 FIRE SUPPRESSION
- 21 13 13 Wet-pipe Sprinkler Systems

DIVISION 22 - PLUMBING

- 22 00 00 Plumbing General Provisions
- 22 05 23 General Duty Valves For Plumbing
- 22 07 19 Plumbing Piping Insulation
- 22 11 16 Domestic Water Piping
- 22 11 19 Domestic Water Piping Specialties
- 22 13 16 Sanitary Waste And Vent Piping
- 22 13 19 Sanitary Waste Piping Specialties
- 22 33 00 Electric, Domestic-Water Heaters
- 22 42 00 Plumbing Fixtures
- 22 62 13 Vacuum Piping for Healthcare Facilities
- 22 63 13 Gas Piping for Healthcare Facilities
- 22 64 00 Medical Gas Alarms

DIVISION 23 - HEATING VENTILATING AND AIR CONDITIONING

- 23 00 00 Mechanical General Provisions
- 23 05 13 Common Motor Requirements For HVAC Equipment
- 23 05 29 Hangers And Supports For HVAC Piping And Equipment
- 23 05 53 Identification For HVAC Piping And Equipment
- 23 05 93 Testing, Adjusting, And Balancing For HVAC
- 23 07 13 Duct Insulation
- 23 07 19 HVAC Piping Insulation
- 23 21 14 HVAC Condensate Piping
- 23 23 00 Refrigerant Piping
- 23 31 13 Metal Ducts
- 23 33 00 Air Duct Accessories
- 23 34 23 HVAC Power Ventilators
- 23 37 13 Diffusers, Registers, Grilles And Louvers
- 23 81 27 Mini-Split-System (1 to 1) Air-Conditioners
- 23 90 20 Temperature Controls

Electrical Sections:

DIVISION 26 - ELECTRICAL

- 26 05 00 Common Work Results for Electrical
- 26 05 19 Low-Voltage Electrical Power Conductors and Cables
- 26 05 26 Grounding and Bonding for Electrical Systems
- 26 05 29 Hangers and Supports for Electrical Systems
- 26 05 33 Raceways and Boxes for Electrical Systems
- 26 05 53 Identification for Electrical Systems
- 26 22 00 Low-Voltage Transformers
- 26 24 16 Panelboards
- 26 25 00 Isolated Power Systems
- 26 27 26 Wiring Devices
- 26 28 13 Fuses
- 26 28 16 Enclosed Switches and Circuit Breakers
- 26 43 13 Surge Protection Device for Service Entrance and Branch Panels

26 51 00 Interior Lighting

DOCUMENT 000101 - PROJECT TITLE PAGE

1.1 PROJECT MANUAL

- A. CHRISTUS St Elizabeth Hospital
- B. Cath Lab Room 1 Equipment Replacement
- C. Architect Project No. 20132.
- D. Architectural Alliance Incorporated .
- E. 350 Pine Street, Suite 720.
- F. Beaumont, Texas 77701.
- G. Phone: 409 866-7196.
- H. Website: www.architectall.com .
- I. Issued: May 17, 2022 .
- J. Copyright 2022 Architectural Alliance Incorporated . All rights reserved.

END OF DOCUMENT 000101

SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Project information.
 - 2. Work covered by Contract Documents.
 - 3. Work under Owner's separate contracts.
 - 4. Owner-furnished/Contractor-installed (OFCI) products.
 - 5. Contractor's use of site and premises.
 - 6. Coordination with occupants.
 - 7. Work restrictions.
 - 8. Specification and Drawing conventions.

1.2 PROJECT INFORMATION

- A. Project Identification: Cath Lab Room 1 Equipment Replacement
 - 1. Project Location: 2830 Calder Avenue, Beaumont, Texas 77701.
- B. Owner: CHRISTUS Hospital St Elizabeth
 - 1. Owner's Representative: James Pearson.
- C. Architect: Architectural Alliance Incorporated .
 - 1. Architect's Representative: Ronald M. Jones, AIA 409 866-7196 rjones@architectaia.com.
- D. Architect's Consultants: Architect has retained the following design professionals, who have prepared designated portions of the Contract Documents:
 - Structural Engineer : Fittz & Shipman Consulting Engineers, Inc. .
 a. MEP Engineer: M&E Consulting

1.3 WORK COVERED BY CONTRACT DOCUMENTS

- A. The Work of Project is defined by the Contract Documents and consists of the following:
 - 1. Modifications to an existing Cardiac Catheter Lab, Room 1, to accommodate new equipment furnished and installed by Siemens, with Booms furnished and installed by Stryker.
- B. Type of Contract:

1. Construction Manager At Risk

1.4 CONTRACTOR'S USE OF SITE AND PREMISES

- A. Restricted Use of Site: Contractor shall have restricted use of Project site for construction operations during construction period.
- B. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weathertight condition throughout construction period. Repair damage caused by construction operations.

1.5 WORK RESTRICTIONS

- A. Comply with restrictions on construction operations.
 - 1. Follow strict guidelines for the Infection Control Risk Assessment (ICRA) to be written and provided to the contractor by the Owner.

1.6 SPECIFICATION AND DRAWING CONVENTIONS

- A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 - 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 - 2. Text Color: Text used in the Specifications, including units of measure, manufacturer and product names, and other text may appear in multiple colors or underlined as part of a hyperlink; no emphasis is implied by text with these characteristics.
 - 3. Hypertext: Text used in the Specifications may contain hyperlinks. Hyperlinks may allow for access to linked information that is not residing in the Specifications. Unless otherwise indicated, linked information is not part of the Contract Documents.
 - 4. Specification requirements are to be performed by Contractor unless specifically stated otherwise.
- B. Division 00 Contracting Requirements: General provisions of the Contract, including General and Supplementary Conditions, apply to all Sections of the Specifications.
- C. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000

SECTION 012900 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements necessary to prepare and process Applications for Payment.

1.2 SCHEDULE OF VALUES

- A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor's construction schedule.
 - 1. Coordinate line items in the schedule of values with items required to be indicated as separate activities in Contractor's construction schedule.
 - 2. Submit the schedule of values to Architect at earliest possible date, but no later than seven days before the date scheduled for submittal of initial Applications for Payment.
- B. Format and Content: Use Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.
 - 1. Arrange schedule of values consistent with format of AIA Document G703.
 - 2. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Provide multiple line items for principal subcontract amounts in excess of five percent of the Contract Sum.
 - 3. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 - a. Differentiate between items stored on-site and items stored off-site.
 - 4. Allowances: Provide a separate line item in the schedule of values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities.
 - 5. Overhead Costs: Include total cost and proportionate share of general overhead and profit for each line item.
 - 6. Overhead Costs: Show cost of temporary facilities and other major cost items that are not direct cost of actual work-in-place as separate line items.
 - 7. Closeout Costs. Include separate line items under Contractor and principal subcontracts for Project closeout requirements in an amount totaling five percent of the Contract Sum and subcontract amount.
 - 8. Schedule of Values Revisions: Revise the schedule of values when Change Orders or Construction Change Directives result in a change in the Contract Sum. Include at least one separate line item for each Change Order and Construction Change Directive.

1.3 APPLICATIONS FOR PAYMENT

- A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
- B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.
- C. Payment Application Times: Submit Application for Payment to Architect by the seventh day of the month. The period covered by each Application for Payment is one month, ending on the last day of the month.
- D. Application for Payment Forms: Use AIA Document G702 and AIA Document G703 as form for Applications for Payment.
- E. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 - 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 - 2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.
 - 3. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.
- F. Transmittal: Submit one signed and notarized electronic PDF copy of each Application for Payment to Architect by a method ensuring receipt within 24 hours. Each application shall include waivers of lien and similar attachments.
 - 1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.
- G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from subcontractors, sub-subcontractors, and suppliers for construction period covered by the previous application.
 - 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
 - 2. When an application shows completion of an item, submit conditional final or full waivers.
 - 3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
 - 4. Submit final Application for Payment with or preceded by conditional final waivers from every entity involved with performance of the Work covered by the application who is lawfully entitled to a lien.
 - 5. Waiver Forms: Submit executed waivers of lien on forms acceptable to Owner.

- H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:
 - 1. List of subcontractors.
 - 2. Schedule of values.
 - 3. Contractor's construction schedule (preliminary if not final).
 - 4. Products list (preliminary if not final).
 - 5. Schedule of unit prices.
 - 6. Submittal schedule (preliminary if not final).
 - 7. List of Contractor's staff assignments.
 - 8. List of Contractor's principal consultants.
 - 9. Copies of building permits.
 - 10. Copies of authorizations and licenses from authorities having jurisdiction for performance of the Work.
 - 11. Initial progress report.
 - 12. Report of preconstruction conference.
- I. Application for Payment at Substantial Completion: After Architect issues the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
 - 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
 - 2. This application shall reflect Certificate(s) of Substantial Completion issued previously for Owner occupancy of designated portions of the Work.
- J. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:
 - 1. Evidence of completion of Project closeout requirements.
 - 2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
 - 3. Updated final statement, accounting for final changes to the Contract Sum.
 - 4. AIA Document G706.
 - 5. AIA Document G706A.
 - 6. AIA Document G707.
 - 7. Evidence that claims have been settled.
 - 8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.
 - 9. Final liquidated damages settlement statement.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012900

SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Submittal schedule requirements.
 - 2. Administrative and procedural requirements for submittals.

1.2 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."
- B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."

1.3 SUBMITTAL SCHEDULE

A. Submittal Schedule: Submit, as an action submittal, a list of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.

1.4 SUBMITTAL FORMATS

- A. Submittal Information: Include the following information in each submittal:
 - 1. Project name.
 - 2. Date.
 - 3. Name of Architect.
 - 4. Name of Contractor.
 - 5. Name of firm or entity that prepared submittal.
 - 6. Names of subcontractor, manufacturer, and supplier.
 - 7. Unique submittal number, including revision identifier. Include Specification Section number with sequential alphanumeric identifier; and alphanumeric suffix for resubmittals.
 - 8. Category and type of submittal.
 - 9. Submittal purpose and description.

- 10. Number and title of Specification Section, with paragraph number and generic name for each of multiple items.
- 11. Drawing number and detail references, as appropriate.
- 12. Indication of full or partial submittal.
- 13. Location(s) where product is to be installed, as appropriate.
- 14. Other necessary identification.
- 15. Remarks.
- 16. Signature of transmitter.
- B. Options: Identify options requiring selection by Architect.
- C. Deviations and Additional Information: On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested by Architect on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.
- D. Paper Submittals:
 - 1. Place a permanent label or title block on each submittal item for identification; include name of firm or entity that prepared submittal.
 - 2. Provide a space approximately 6 by 8 inches on label or beside title block to record Contractor's review and approval markings and action taken by Architect.
 - 3. Action Submittals: Submit three paper copies of each submittal unless otherwise indicated. Architect will return two copies.
 - 4. Informational Submittals: Submit paper copies of each submittal unless otherwise indicated. Architect will not return copies.
 - 5. Transmittal for Submittals: Assemble each submittal individually and appropriately for transmittal and handling.
- E. Electronic Submittals: Prepare submittals as PDF package, incorporating complete information into each PDF file. Name PDF file with submittal number.

1.5 SUBMITTAL PROCEDURES

- A. Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 - 1. Email: Prepare submittals as PDF package, and transmit to Architect by sending via email. Include PDF transmittal form. Include information in email subject line as requested by Architect.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.

- 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow seven days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 - 2. Resubmittal Review: Allow seven days for review of each resubmittal.
- D. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
- E. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.
- F. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect's action stamp.

1.6 SUBMITTAL REQUIREMENTS

- A. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are unsuitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.
 - 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams that show factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
 - 5. Submit Product Data before Shop Drawings, and before or concurrent with Samples.
- B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.

- 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
- 2. Paper Sheet Size: Except for templates, patterns, and similar full-size Drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than 30 by 42 inches.
 - a. Two opaque (bond) copies of each submittal. Architect will return one copy.
- C. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other materials.
 - 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 - 2. Identification: Permanently attach label on unexposed side of Samples that includes the following:
 - a. Project name and submittal number.
 - b. Generic description of Sample.
 - c. Product name and name of manufacturer.
 - d. Sample source.
 - e. Number and title of applicable Specification Section.
 - f. Specification paragraph number and generic name of each item.
 - 3. Email Transmittal: Provide PDF transmittal. Include digital image file illustrating Sample characteristics, and identification information for record.
 - 4. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 - a. Number of Samples: Submit one full set(s) of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.
 - 5. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 - a. Number of Samples: Submit three sets of Samples. Architect will retain two Sample sets; remainder will be returned. Mark up and retain one returned Sample set as a project record Sample.
 - 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 - 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.

- D. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
- E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.
- F. Design Data: Prepare and submit written and graphic information indicating compliance with indicated performance and design criteria in individual Specification Sections. Include list of assumptions and summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Number each page of submittal.
- G. Certificates:
 - 1. Certificates and Certifications Submittals: Submit a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity. Provide a notarized signature where indicated.
 - 2. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
 - 3. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
 - 4. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
 - 5. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
 - 6. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.
- H. Test and Research Reports:
 - 1. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for substrate preparation and primers required.
 - 2. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
 - 3. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
 - 4. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

- 5. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
- 6. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:
 - a. Name of evaluation organization.
 - b. Date of evaluation.
 - c. Time period when report is in effect.
 - d. Product and manufacturers' names.
 - e. Description of product.
 - f. Test procedures and results.
 - g. Limitations of use.

1.7 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are insufficient to perform services or certification required, submit a written request for additional information to Architect.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF file paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

1.8 CONTRACTOR'S REVIEW

- A. Action Submittals and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.
- B. Contractor's Approval: Indicate Contractor's approval for each submittal with a uniform approval stamp . Include name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
 - 1. Architect will not review submittals received from Contractor that do not have Contractor's review and approval.

1.9 ARCHITECT'S REVIEW

- A. Action Submittals: Architect will review each submittal, indicate corrections or revisions required, and return it.
 - 1. PDF Submittals: Architect will indicate, via markup on each submittal, the appropriate action [.]
 - 2. Paper Submittals: Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action [.]
- B. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.
- C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Architect.
- D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- E. Architect will discard submittals received from sources other than Contractor.
- F. Submittals not required by the Contract Documents will be returned by Architect without action.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013300

SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for Contract closeout, including, but not limited to, the following:
 - 1. Substantial Completion procedures.
 - 2. Final completion procedures.
 - 3. Warranties.
 - 4. Final cleaning.
- B. Related Requirements:
 - 1. Section 017823 "Operation and Maintenance Data" for additional operation and maintenance manual requirements.
 - 2. Section 017839 "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.
 - 3. Section 017900 "Demonstration and Training" for requirements to train the Owner's maintenance personnel to adjust, operate, and maintain products, equipment, and systems.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of cleaning agent.
- B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- C. Certified List of Incomplete Items: Final submittal at Final Completion.

1.3 CLOSEOUT SUBMITTALS

- A. Certificates of Release: From authorities having jurisdiction.
- B. Certificate of Insurance: For continuing coverage.
- C. Field Report: For pest-control inspection.

1.4 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's "punch list"), indicating the value of each item on the list and reasons why the Work is incomplete.

- B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction, permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 2. Submit closeout submittals specified in other Division 01 Sections, including Project Record Documents, operation and maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.
 - 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect . Label with manufacturer's name and model number.
 - 5. Submit testing, adjusting, and balancing records.
 - 6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.
- C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Section 017900 "Demonstration and Training."
 - 6. Advise Owner of changeover in utility services.
 - 7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
 - 8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 9. Complete final cleaning requirements.
 - 10. Touch up paint and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1.5 FINAL COMPLETION PROCEDURES

- A. Submittals Prior to Final Completion: Before requesting final inspection for determining Final Completion, complete the following:
 - 1. Submit a final Application for Payment in accordance with Section 012900 "Payment Procedures."
 - 2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 - 3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
 - 4. Submit pest-control final inspection report.
- B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1.6 LIST OF INCOMPLETE ITEMS

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, starting with exterior areas first and , listed by room or space number.
 - 2. Organize items applying to each space by major element, including categories for ceilings, individual walls, floors, equipment, and building systems.
 - 3. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.
 - c. Name of Architect.
 - d. Name of Contractor.
 - e. Page number.
 - 4. Submit list of incomplete items in the following format:
 - a. MS Excel Electronic File: Architect will return annotated file.

1.7 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where warranties are indicated to commence on dates other than date of Substantial Completion, or when delay in submittal of warranties might limit Owner's rights under warranty.

- B. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.
- C. Warranty Electronic File: Provide warranties and bonds in PDF format. Assemble complete warranty and bond submittal package into a single electronic PDF file with bookmarks enabling navigation to each item. Provide bookmarked table of contents at beginning of document.
 - 1. Submit on digital media acceptable to Architect .
- D. Warranties in Paper Form:
 - 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.
- E. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site of rubbish, waste material, litter, and other foreign substances.
 - b. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - c. Remove debris and surface dust from limited-access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - d. Clean flooring, removing debris, dirt, and staining; clean according to manufacturer's recommendations.

- e. Vacuum and mop concrete.
- f. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
- g. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.
- h. Remove labels that are not permanent.
- i. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
- j. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
- k. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- 1. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.
- m. Clean luminaires, lamps, globes, and reflectors to function with full efficiency.
- n. Clean strainers.
- o. Leave Project clean and ready for occupancy.
- C. Pest Control: Comply with pest control requirements in Section 015000 "Temporary Facilities and Controls." Prepare written report.
- D. Construction Waste Disposal: Comply with waste-disposal requirements in Section 015000 "Temporary Facilities and Controls."

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations required by Section 017300 "Execution" before requesting inspection for determination of Substantial Completion.

END OF SECTION 017700

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory manuals.
 - 2. Emergency manuals.
 - 3. Systems and equipment operation manuals.
 - 4. Systems and equipment maintenance manuals.
 - 5. Product maintenance manuals.

1.2 CLOSEOUT SUBMITTALS

- A. Submit operation and maintenance manuals indicated. Provide content for each manual as specified in individual Specification Sections, and as reviewed and approved at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Architect will comment on whether content of operation and maintenance submittals is acceptable.
 - 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operation and maintenance manuals in the following format:
 - 1. Submit on digital media acceptable to Architect . Enable reviewer comments on draft submittals.
- C. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect will return copy with comments.
 - 1. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's comments and prior to commencing demonstration and training.
- D. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

1.3 FORMAT OF OPERATION AND MAINTENANCE MANUALS

- A. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. File Names and Bookmarks: Bookmark individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
- B. Manuals, Paper Copy: Submit manuals in the form of hard-copy, bound and labeled volumes.
 - 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - 2. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

1.4 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

- A. Organization of Manuals: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Architect.
 - 7. Name and contact information for Commissioning Authority.

- 8. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
- 9. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

1.5 EMERGENCY MANUALS

- A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.
- B. Content: Organize manual into a separate section for each of the following:
 - 1. Type of emergency.
 - 2. Emergency instructions.
 - 3. Emergency procedures.
- C. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 - 1. Fire.
 - 2. Flood.
 - 3. Gas leak.
 - 4. Water leak.
 - 5. Power failure.
 - 6. Water outage.
 - 7. System, subsystem, or equipment failure.
- D. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.
- E. Emergency Procedures: Include the following, as applicable:
 - 1. Instructions on stopping.
 - 2. Shutdown instructions for each type of emergency.

- 3. Operating instructions for conditions outside normal operating limits.
- 4. Required sequences for electric or electronic systems.
- 5. Special operating instructions and procedures.

1.6 SYSTEMS AND EQUIPMENT OPERATION MANUALS

- A. Systems and Equipment Operation Manual: Assemble a complete set of data indicating operation of each system, subsystem, and piece of equipment not part of a system. Include information required for daily operation and management, operating standards, and routine and special operating procedures.
- B. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- C. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.
- D. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.

- 9. Special operating instructions and procedures.
- E. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- F. Piped Systems: Diagram piping as installed, and identify color coding where required for identification.

1.7 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Systems and Equipment Maintenance Manuals: Assemble a complete set of data indicating maintenance of each system, subsystem, and piece of equipment not part of a system. Include manufacturers' maintenance documentation, preventive maintenance procedures and frequency, repair procedures, wiring and systems diagrams, lists of spare parts, and warranty information.
- B. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranties and bonds, as described below.
- C. Manufacturers' Maintenance Documentation: Include the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins; include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - a. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.
- H. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.

1.8 PRODUCT MAINTENANCE MANUALS

- A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- B. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 017823

SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for Project Record Documents, including the following:
 - 1. Record Drawings.
 - 2. Record specifications.
 - 3. Record Product Data.
- B. Related Requirements:
 - 1. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.2 CLOSEOUT SUBMITTALS

- A. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit one set(s) of marked-up record prints.
 - 2. Number of Copies: Submit copies of Record Drawings as follows:
 - a. Initial Submittal:
 - 1) Submit PDF electronic files of scanned record prints and one set(s) of file prints.
 - b. Final Submittal:
 - 1) Submit PDF electronic files of scanned Record Prints and one set(s) of file prints.
 - 2) Print each drawing, whether or not changes and additional information were recorded.
 - c. Final Submittal:
 - 1) Submit Record Digital Data Files and one set(s) of Record Digital Data File plots.
 - 2) Plot each drawing file, whether or not changes and additional information were recorded.
- B. Record Specifications: Submit annotated PDF electronic files and one paper copy of Project's Specifications, including addenda and Contract modifications.
- C. Record Product Data: Submit annotated PDF electronic files and directories and one paper copies of each submittal.
 - 1. Where record Product Data are required as part of operation and maintenance manuals, submit duplicate marked-up Product Data as a component of manual.

1.3 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation, where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an acceptable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.
 - e. Cross-reference record prints to corresponding photographic documentation.
 - 2. Content: Types of items requiring marking include, but are not limited to, the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduits.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Duct size and routing.
 - i. Locations of concealed internal utilities.
 - j. Changes made by Change Order or Construction Change Directive.
 - k. Changes made following Architect's written orders.
 - 1. Details not on the original Contract Drawings.
 - m. Field records for variable and concealed conditions.
 - n. Record information on the Work that is shown only schematically.
 - 3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.
 - 4. Mark record prints with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
 - 5. Mark important additional information that was either shown schematically or omitted from original Drawings.
 - 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Architect. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:
 - 1. Format: Same digital data software program, version, and operating system as for the original Contract Drawings.
 - 2. Format: Annotated PDF electronic file with comment function enabled.
 - 3. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
 - 4. Refer instances of uncertainty to Architect for resolution.

- 5. Architect will furnish Contractor with one set of digital data files of the Contract Drawings for use in recording information.
- C. Format: Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - 1. Record Prints: Organize record prints into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 - 2. Format: Annotated PDF electronic file with comment function enabled.
 - 3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.
 - 4. Identification: As follows:
 - a. Project name.
 - b. Date.
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Architect.
 - e. Name of Contractor.

1.4 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation, where installation varies from that indicated in Specifications, addenda, and Contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
 - 4. For each principal product, indicate whether Record Product Data has been submitted in operation and maintenance manuals instead of submitted as Record Product Data.
 - 5. Note related Change Orders , Record Product Data, and Record Drawings where applicable.
- B. Format: Submit record specifications as annotated PDF electronic file .

1.5 RECORD PRODUCT DATA

- A. Recording: Maintain one copy of each submittal during the construction period for Project Record Document purposes. Post changes and revisions to Project Record Documents as they occur; do not wait until end of Project.
- B. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.

- 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
- 3. Note related Change Orders , Record Specifications, and Record Drawings where applicable.
- C. Format: Submit Record Product Data as annotated PDF electronic file .
 - 1. Include Record Product Data directory organized by Specification Section number and title, electronically linked to each item of Record Product Data.

1.6 MAINTENANCE OF RECORD DOCUMENTS

A. Maintenance of Record Documents: Store Record Documents in the field office apart from the Contract Documents used for construction. Do not use Project Record Documents for construction purposes. Maintain Record Documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to Project Record Documents for Architect's reference during normal working hours.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 017839
SECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Selective interior demolition

1.2 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

1.3 CLOSEOUT SUBMITTALS

A. Inventory of items that have been removed and salvaged.

1.4 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.5 FIELD CONDITIONS

- A. Owner will occupy the Hospital throughout selective demolition. Conduct selective demolition so Owner's operations will not be disrupted.
- B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. Hazardous materials will be removed by Owner before start of the Work.
 - 2. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- E. Storage or sale of removed items or materials on-site is not permitted.

- F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations.
- G. Arrange selective demolition schedule so as not to interfere with Owner's operations.

1.6 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials and using approved contractors so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been made safe by lockout tag out procedures before starting selective demolition operations.

3.2 PREPARATION

A. Refrigerant: Before starting demolition, remove refrigerant from mechanical equipment according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

- A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
- B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utility services and mechanical/electrical systems serving areas to be selectively demolished.
 - 1. Arrange to shut off utilities with utility companies.

- 2. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
- 3. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated on Drawings to be removed.
 - a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - b. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - c. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - d. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 - e. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.

3.4 SELECTIVE DEMOLITION

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.
 - 2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
 - 4. Maintain fire watch during and for at least 8 hours after flame-cutting operations.
 - 5. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 - 6. Dispose of demolished items and materials promptly.
- B. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 CLEANING

- A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste landfill acceptable to authorities having jurisdiction.
 - 1. Do not allow demolished materials to accumulate on-site.

- 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
- B. Burning: Do not burn demolished materials.
- C. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

SECTION 055000 - MEDICAL EQUIPMENT SUPPORT SYSTEM UNISTRUT

PART 1 - PART 1GENERAL

1.1 SECTION INCLUDES

- A. Summary:
 - 1. Performance specifications for engineered design-build support systems using coldformed adjustable metal framing and hot-rolled steel section supports.

B. Scope:

- 1. All ceiling mounted equipment including:
 - a. Surgical Light Supports.
 - b. Procedure/Exam Light Supports.
 - c. Gas/Service Column/Boom Supports.
 - d. Catheterization Equipment Ceiling Channel Grid.
 - e. Monitor Equipment Ceiling Channel Grid.
 - f. Single Point Monitor or Projector Supports.
- 2. Provide and install equipment support systems as located on the reflected ceiling plans in roomsand as scheduled in the Equipment Schedule .
- 3. Reference Architectural Drawings:.
- 4. Ceiling Channel Grids shall be a (universal grid or per manufacturer's drawing) -type consisting of 12 Gage 1-5/8" cold-formed channel rails flush with the finished ceiling and extending wall to wall unless otherwise noted on the reflected ceiling plans and shall be perpendicular to the path of travel of the equipment.
- C. Ceiling Direct Mounting Channel Systems shall be single channels consisting of 12 Gage 1-5/8" cold-formed channel rails flush with the finished ceiling and extending wall to wall unless otherwise noted on the reflected ceiling plans and shall be parallel to the path of travel of the equipment. Take-Up rails finish painted white with trolleys shall be provided and installed with these systems.

1.2 **REFERENCES**

- A. All design shall be in accordance with:
 - 1. The governing local and state building code including IBC 2000.
 - 2. American Iron and Steel Institute (AISI) Cold-Formed Steel Design Manual (and Specifications) 1996 Edition.
 - 3. American Iron and Steel Institute (AISI) Steel Construction Manual (and Specifications) ASD 9th Edition.
- B. Material Standards:

- 1. ASTM A36 Carbon Structural Steel
- 2. ASTM A53 Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless.
- 3. ASTM A325 Structural Bolts, Steel, Heat Treated 120/105 ksi Minimum Tensile Strength.
- 4. ASTM A500 Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in rounds and Shapes.
- 5. ASTM A501 Hot-rolled Welded and Seamless Carbon Steel Structural Tubing.
- 6. ASTM A572 High-Strength Low-Allow Columbium-Vanadium Structural Steel.
- 7. A576-90b(2000) Standard Specification for Steel Bars, Carbon, Hot-Wrought, Special Quality.
- 8. ASTM A653 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by Hot-Dip Process.
- 9. ASTM A992 Steel for Structural Shapes
- 10. A1011/A1011M-03a Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability.
- C. Connection Standards:
 - 1. RCSC (Research Council on Structural Connections) Specification for Structural Joints Using ASTM A325 or A490 Bolts.
 - 2. AWS D1.1 Structural Welding Code

1.3 DEFINITIONS

- A. Qualified Person: Someone "... who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, work, or the project" (defined by OSHA 29 CFR 1926.32 (m)).
- B. Design-Build: Method where design and construction are a single source of responsibility for one entity.
- C. Turnkey: Fast-track supply and installation in a condition ready for immediate use, occupation, or operation.

1.4 SUBMITTALS

- A. Shop Drawings: Successful Design-Build Medical Equipment Support Contractor shall submit AutoCAD generated shop drawings (hand drawings are not acceptable) showing the complete system including plans, sections, and details of the system. Center point / Iso-centers of all equipment shall be located off of finished wall lines. Plans shall show all manufactured parts by catalog numbers, all fabricated parts, and all fasteners and hardware.
- B. Calculations: Structural calculations for all member and connections shall be submitted. The Medical support system shall lend itself to a rational structural analysis with section properties of framing members demonstrated by calculations. Structural calculations and drawings shall be furnished with a stamp by a licensed engineer in the state where the installation is to occur

complying with all applicable codes and regulatory requirements. Calculations must include design for deflection and rotational requirements, as applicable, and not just stress.

1.5 QUALITY ASSURANCE

- A. Design-Build Medical Equipment Support Contractor Quality Assurance:
 - 1. Material and installation shall be provided by qualified and competent persons from a Design-Build Medical Equipment Support Contractor with at least ten (10) years experienced in the professional engineering, design, manufacture and installation of adjustable metal framing supports. The Design-Build Medical Equipment Support Contractor shall demonstrate (10) years experience of turnkey projects of similar scope and size and shall maintain a continuing quality assurance program for both its material and installation crews.
 - 2. Design-Build Medical Equipment Support Contractor shall provide the single source responsibility and liability for all engineering, design, materials and workmanship, and shall provide as single limited warranty for all aspects of the project: engineering, fabrication, material quality, and installation. Installing contractor must be a trained representative of the cold formed metal framing system manufacturer.
 - 3. Design-Build Medical Equipment Support Contractor shall be responsible for complete coordination with the equipment suppliers to verify all loading and installation requirements and shall be responsible for directly contacting these companies for the latest design requirements.
 - 4. Design-Build Medical Equipment Support Contractor shall employ a qualified and competent structural engineer to directly supervise all design and construction phases.
 - 5. Acceptable Design-Build Medical Equipment Support Contractors:
 - a. Unistrut Service Company 24400 Sperry Road
 - b. Westlake, OH 44145
 - c. phone:440-348-9450
 - d. fax:440-348-9455
 - 6. Design-Build Medical Equipment Support Contractor shall meet the following compliance requirements by having the following in place:
 - a. Drug-Free Workplace Policy and State Certification.
 - b. Established Industrial Safety and Fall Protection Program.
 - c. Minimum 10 hour Occupational Safety & Health Administration (OSHA) Training Certification.
 - d. Worker's Compensation Insurance.
 - e. "Installer Training" for any hybrid or adhesive anchoring systems, if applicable (Hilti)
- B. Component Quality Assurance:
 - 1. Manufacturers Brochure: Brochure shall show materials, strengths, finishes and sizes. Sufficient engineering information shall be provided to permit stress calculations. Materials listed should conform to the appropriate specifications from ASTM, AISI, AISC, and / or AWS.
 - 2. Material Quality Assurance: Submit certification that products comply with specified requirements and are suitable for intended application.

- C. Installation Quality Assurance:
 - 1. Submit list of a minimum of 5 completed projects of similar size and complexity to this Work. Include for each project:
 - a. Project name and location.
 - b. Name of owner.
 - c. Name of contractor.
 - d. Name of architect.
 - e. Name of manufacturer.
 - f. Number and type of supports.
 - g. Date of completion.
 - 2. Pre-Installation Meeting: Convene a pre-installation meeting a minimum of 2 two weeks before start of installation of support systems. Require attendance of parties directly affecting work of this section, including General Contractor or Owner representative, Mechanical, Plumbing and Electrical Contractor, Equipment representative and support system Design-Build Medical Equipment Support Contractor. Review the following:
 - a. Shop Drawings.
 - b. Sequencing.
 - c. Existing Interferences.
 - d. Mechanical, Plumbing, and Electrical installation coordination.
 - e. Time restrictions.
 - f. Access to areas.
 - g. Finished Ceiling Elevations.
 - h. Reflected Ceiling Plan light fixture locations.
 - i. Final equipment center-point / iso-center locations.

1.6 LIABILITY AND WARRANTY

- A. Liability: Installing contractor shall be able to furnish coverage liability insurance, with limitation of no less than five (5) million dollars. Materials, design, and installations shall be furnished by a single source Design-Build Medical Equipment Support Contractor to minimize total liability.
- B. Warranty: A one (1) year limited warranty on all engineering, design, materials, installation, and system performance shall be provided in writing to the Owner from the date of Owner sign-off at project completion.

1.7 DESIGN CRITERIA

- A. Any designs indicated in the contract documents are for concept only and should not be taken as final designs nor shall be used for material take-off nor used for estimating purposes in any way.
- B. Final designs including all final designs, materials and all installation labor shall be the exclusive and sole responsibility of the Design-Build Medical Equipment Support Contractor and all costs shall be included in their proposal at bid time.

- C. The building structural members, elevations, and room layout shall be fully coordinated for the design of all supports. Equipment loads must be adequately supported from the building structural members and distributed accordingly. Floor to floor distances, finished ceiling elevations, room locations, and building support structure elevations must all be coordinated for appropriate design of support systems for proper understanding of required hanger lengths, bracing requirements, attachment design, etc.
- D. Loads to be used shall be per each equipment manufacturer's specification.
- E. An overall system minimum factor of safety of two (2) shall be used for strength design.
- F. Minimum rotational requirements, unless otherwise stated in the equipment manufacturer's specifications, shall be as follows:
 - 1. For all light and gas/service column/booms: Maximum rotation on the equipment mounting plate shall be no greater than 0.20 degrees per 12".
 - 2. For all Unistrut Ceiling Channel Grids and Ceiling Channel Systems: Maximum deflection on the system shall be no greater than 0.0625" for any one location of worst case loading on the system.
- G. All systems shall be adequately braced in all four directions for lateral loading. If no lateral loading is specified by the equipment manufacturer's specifications, 1/10th of the static downward loading shall be applied in the horizontal axis. Movement shall not exceed the total for that allowed on the system at the worst case loading condition.
- H. For ceiling channel, rails shall be designed for no more than 1/720th of the span maximum deflection in either plane when maximum loading conditions are applied due to equipment operation.
- I. Ceiling channel shall be installed horizontal in plane and parallel to each other within 1/32nd of an inch.
- J. Anchorage to the existing structure shall be as designed by the structural engineer of the system.
 - 1. Mechanical anchors into concrete shall be designed with a minimum factor of safety of 6 and shall be either expansion bolts, epoxy anchors, or through bolts with backing plate.
 - 2. Anchorages into existing concrete shall not penetrate existing reinforcing bars.
 - 3. Anchorages into new post-tension concrete shall require concrete inserts designed, located, and supplied by the Design-Build Medical Equipment Support Contractor (installed by Concrete Contractor).
 - 4. Connections to structural steel shall be clamp-on fittings or field welding.
 - 5. Drilling through truss bottom chords shall not be allowed.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Coordinate deliveries and storage of all materials with General Contractor or Owner.

PART 2 - PART 2PRODUCTS

2.1 MANUFACTURERS

- A. All cold-formed channel and fittings shall be a manufactured by:
 - 1. Unistrut Corporation or approved equal. No alternatives are approved unless written authorization from Owner is obtained.

2.2 MATERIALS

- A. Channel: All cold-formed channel members shall be fabricated from structural grade steel conforming to one of the following ASTM specifications: A1011 SS GR 33 or A653 GR 33. Channel shall be 1-5/8" framing system 12 Gage. Minimum yield strength shall be 33 ksi.
- B. Fittings: All cold-formed fittings shall be fabricated from steel conforming to one of the following ASTM specifications: A575, A576, A36, or A653. Minimum fitting thickness shall be ¼" with physical requirements per A1011. Minimum yield strength shall be 33 ksi.
- C. Channel Nuts: All channel nuts shall be fabricated from steel conforming to ASTM specification A1011 SS GR 33.
- D. Bolts and Fasteners: All bolts and fasteners used in connections shall be minimum SAE Grade 5, EG finish. Threaded Rod Grade B7.
- E. Hot Rolled Structural Steel: ASTM A36 minimum.

2.3 FINISHES

- A. All cold-formed channel and/or fitting members shall be finished in accordance with one of the following standards:
 - 1. Perma-Green II (GR): Rust inhibitive acrylic enamel paint finish applied by electrodeposition, after cleaning and phosphating, and thoroughly baked. Color per Federal Standard 595a color number 14109 (dark limit V-). Finish paint shall withstand minimum 400 hours salt spray (scribed), and 600 hours salt spray (unscribed), when tested in accordance with ASTM B117. Or approved equal paint finish.
 - 2. Electro-Galvanized (EG): Electrolytically zinc coated per ASTM B633 Type III SC 1.
 - 3. Pre-Galvanized (PG): Zinc coated by hot-dipped process prior to roll forming. The zinc weight shall be G90 conforming to ASTM A653.

PART 3 - PART 3EXECUTION

3.1 EXAMINATION

- A. Examine building drawings and areas and conditions in which systems are to be installed. Notify Architect of areas or conditions not acceptable for support of system. Do not begin installation until unacceptable areas or conditions have been corrected.
- B. Design all supports to work around mechanical ductwork, electrical lighting fixtures, and plumbing where possible. All efforts shall be fully coordinated prior to final design.

3.2 INSTALLATION

- A. For ceiling channel, rails shall be on centers at 2'-2" center to center as required by equipment manufacturer and allow continuous attachment along any point on the rail. System shall be true, plumb, and level to the tolerances specified.
- B. Framing shall be adjusted as required in the field to avoid interferences.
- C. Hammer drilling times shall be coordinated in existing facilities with the Owner.
- D. All bolted connections into cold-formed channel members with channel nuts shall be tightened to a minimum:
 - 1. 50 ft-lbs for $\frac{1}{2}$ " bolts.
 - 2. 100 ft-lbs for 5/8" bolts.
 - 3. 125 ft-lbs for $\frac{3}{4}$ " bolts.
- E. All bolted connections for structural steel joints shall be per ASIC Specifications for Structural Joints Using ASTM A325 or A490 Bolts.
- F. Gas/Service Column/Boom mounting plates supplied by the equipment supplier as noted in the equipment specifications shall be installed by the system support Design-Build Medical Equipment Support Contractor unless otherwise specified.
- G. Supply and install all required threaded rod, hex nuts, flat washers, lock washers for exam and surgical lights and gas/service column/booms unless otherwise specified.
- H. Install wall mold on Ceiling Channel Grids and Ceiling Direct Mounting Channel Systems in rooms to receive lay-in ceiling tile where applicable.
- I. Shear off tek screws on the inside of the ceiling channel for equipment mounting block installation.
- J. Supply and install white snap-in closure strips into the open ceiling channel as required after the equipment has been installed unless installation labor is agreed to otherwise at the time of contract agreement.

3.3 CLEANUP

A. Upon completion of this section of work, remove all protective wraps and debris. Repair any damage due to installation of this section of work.

3.4 **PROTECTION**

- A. During installation, it shall be the responsibility of the Design-Build Medical Equipment Support Contractor to protect this work from damage.
- B. Upon completion of this scope of work, it shall become the responsibility of the general contractor or Owner to protect this work from damage during the remainder of construction on the project and until substantial completion.
- C. Any modifications to the installed system shall be performed only and exclusively by the Design-Build Medical Equipment Support Contractor responsible for the system. Modifications made by any other party transfers liability and integrity of the system to that party making the modifications.

SECTION 064116 - PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Plastic-laminate-clad architectural cabinets.
 - 2. Cabinet hardware and accessories.
 - 3. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-clad architectural cabinets that are not concealed within other construction.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and attachment details.
- C. Samples: For each exposed product and for each color and texture specified.

1.3 FIELD CONDITIONS

- A. Environmental Limitations without Humidity Control: Do not deliver or install cabinets until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature and relative humidity at levels planned for building occupants during the remainder of the construction period.
- B. Environmental Limitations with Humidity Control: Do not deliver or install cabinets until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 43 and 70 percent during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

- A. Quality Standard: Unless otherwise indicated, comply with the Architectural Woodwork Standards for grades of cabinets indicated for construction, finishes, installation, and other requirements.
- B. Type of Construction: Face frame.
- C. Door and Drawer-Front Style: Flush overlay.
- D. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by quality standard.
- E. Laminate Cladding for Exposed Surfaces:
 - 1. Horizontal Surfaces: Grade HGS .
 - 2. Postformed Surfaces: Grade HGP.
 - 3. Vertical Surfaces: Grade VGS.
 - 4. Edges: PVC tape, 0.018-inch minimum thickness, matching laminate in color, pattern, and finish.
 - 5. Pattern Direction: As indicated.
- F. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.
- G. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.
- H. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 - 1. As Noted on Drawings

2.2 WOOD MATERIALS

- A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.
- B. Composite Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.
 - 1. Medium-Density Fiberboard (MDF): ANSI A208.2, Grade 130.
 - 2. Particleboard (Medium Density): ANSI A208.1, Grade M-2.

3. Thermally Fused Laminate (TFL) Panels: Particleboard or MDF finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for Test Methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.3 CABINET HARDWARE AND ACCESSORIES

- A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets except for items specified in Section 087100 "Door Hardware."
- B. Frameless Concealed Hinges (European Type): ANSI/BHMA A156.9, B01602, 170 degrees of opening.
- C. Back-Mounted Pulls: ANSI/BHMA A156.9, B02011.
- D. Wire Pulls: Back mounted, solid metal, 4 inches long, 5/16 inch in diameter.
- E. Adjustable Shelf Standards and Supports: ANSI/BHMA A156.9, B04071; with shelf rests, B04081.
- F. Shelf Rests: ANSI/BHMA A156.9, B04013; metal Route bottoms of all shelves to receive pins..
- G. Drawer Slides: Blum MetaBox or approved equal
- H. Door Locks: ANSI/BHMA A156.11, E07121.
- I. Drawer Locks: ANSI/BHMA A156.11, E07041.
- J. Door and Drawer Silencers: ANSI/BHMA A156.16, L03011.
- K. Grommets for Cable Passage: 2-inch OD, molded-plastic grommets and matching plastic caps with slot for wire passage.
 - 1. Color: To Be Selected .
- L. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with ANSI/BHMA A156.18 for ANSI/BHMA finish number indicated.
 - 1. Satin Stainless Steel: ANSI/BHMA 630.
- M. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in ANSI/BHMA A156.9.

2.4 MISCELLANEOUS MATERIALS

A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln-dried to less than 15 percent moisture content.

- B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrousmetal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
- C. Adhesive for Bonding Plastic Laminate: Contact cement .
 - 1. Adhesive for Bonding Edges: Hot-melt adhesive.

2.5 FABRICATION

- A. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
- B. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
- C. Install glass to comply with applicable requirements in Section 088000 "Glazing" and in GANA's "Glazing Manual."
 - 1. For glass in frames, secure glass with removable stops.
 - 2. For exposed glass edges, polish and grind smooth.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Before installation, condition cabinets to humidity conditions in installation areas for not less than 72 hours.
- B. Architectural Woodwork Standards Grade: Install cabinets to comply with quality standard grade of item to be installed.
- C. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with wafer-head cabinet installation screws.
- D. Install cabinets level, plumb, and true in line to a tolerance of 1/8 inch in 96 inches using concealed shims.
 - 1. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
 - 2. Install cabinets without distortion so doors and drawers fit openings and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide

unencumbered operation. Complete installation of hardware and accessory items as indicated.

3. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into wood framing, blocking, or hanging strips .

3.2 FIELD QUALITY CONTROL

- A. Inspections: Provide inspection of installed Work through AWI's Quality Certification Program certifying that woodwork, including installation, complies with requirements of the Architectural Woodwork Standards for the specified grade.
 - 1. Inspection entity shall prepare and submit report of inspection.

SECTION 081416 - FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Solid-core flush wood doors with plastic-laminate-faces.
 - 2. Factory finishing flush wood doors.
 - 3. Factory fitting flush wood doors to frames and factory machining for hardware.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product, including the following:
 - 1. Door core materials and construction.
 - 2. Door edge construction
 - 3. Door face type and characteristics.
 - 4. Door trim for openings.
 - 5. Door frame construction.
 - 6. Factory-machining criteria.
 - 7. Factory- finishing specifications.
- B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each type of door; construction details not covered in Product Data; and the following:
 - 1. Door schedule indicating door and frame location, type, size, fire protection rating, and swing.
 - 2. Door elevations, dimension and locations of hardware, lite and louver cutouts, and glazing thicknesses.
 - 3. Details of frame for each frame type, including dimensions and profile.
 - 4. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
 - 5. Dimensions and locations of blocking for hardware attachment.
 - 6. Clearances and undercuts.
- C. Samples: For plastic-laminate door faces .

1.3 CLOSEOUT SUBMITTALS

A. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.4 QUALITY ASSURANCE

- A. Manufacturer's Certification: Licensed participant in AWI's Quality Certification Program .
- B. Fire-Rated Door Inspector Qualifications: Inspector for field quality-control inspections of firerated door assemblies shall comply with qualifications set forth in NFPA 80, Section 5.2.3.1 and the following:
 - 1. DHI's Fire and Egress Door Assembly Inspector (FDAI) certification.
- C. Egress Door Inspector Qualifications: Inspector for field quality-control inspections of egress door assemblies shall comply with qualifications set forth in NFPA 101, Section 7.2.1.15.4 and the following:
 - 1. DHI's Fire and Egress Door Assembly Inspector (FDAI) certification.

PART 2 - PRODUCTS

2.1 FLUSH WOOD DOORS, GENERAL

- A. Quality Standard: In addition to requirements specified, comply with "Architectural Woodwork Standards."
 - 1. Provide labels and certificates from AWI certification program indicating that doors and frames comply with requirements of grades specified.

2.2 SOLID-CORE FLUSH WOOD DOORS WITH PLASTIC-LAMINATE FACES

- A. Interior Doors :
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. ASSA ABLOY.
 - b. Curries.
 - c. VT Industries Inc.
 - d. Weyerhauser Company.
 - 2. Performance Grade:
 - a. ANSI/WDMA I.S. 1A Extra Heavy Duty: All interior doors .
 - 3. Plastic-Laminate Faces: High-pressure decorative laminates complying with NEMA LD 3, Grade HGS .
 - 4. Colors, Patterns, and Finishes: Formica 7012-58 Amber Maple.
 - 5. Exposed Vertical Edges: impact-resistant polymer edging, applied after faces.
 - a. Fire-Rated Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed vertical edges.
 - b. Fire-Rated Pairs of Doors: Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles

with concealed intumescent seals. Comply with specified requirements for exposed edges.

- c. Fire-Rated Pairs of Doors: Provide formed-steel edges and astragals with intumescent seals.
 - 1) Finish steel edges and astragals with baked enamel same color as doors.
 - 2) Finish steel edges and astragals to match door hardware (locksets or exit devices).
- d. Mineral-Core Doors: At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
 - 1) Screw-Holding Capability: 550 lbf in accordance with WDMA T.M. 10.
- 6. Core for Non-Fire-Rated Doors:
 - a. ANSI A208.1, Grade LD-2 particleboard.
 - 1) Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.
 - a) 5-inch top-rail blocking, in doors indicated to have closers.
 - b) 5-inch bottom-rail blocking, in exterior doors and doors indicated to have kick, mop, or armor plates.
 - 2) Provide doors with glued-wood-stave or WDMA I.S. 10 structuralcomposite-lumber cores instead of particleboard cores for doors scheduled to receive exit devices in Section 087100 "Door Hardware."
 - b. Glued wood stave.
 - c. WDMA I.S. 10 structural composite lumber.
 - 1) Screw Withdrawal, Face: 550 lbf.
 - 2) Screw Withdrawal, Edge: 550 lbf.
 - d. Either glued wood stave or WDMA I.S. 10 structural composite lumber.
- 7. Core for Fire-Rated Doors: As required to achieve fire-protection rating indicated on Drawings.
 - a. Blocking for Mineral-Core Doors: Provide composite blocking with improved screw-holding capability approved for use in doors of fire-protection ratings indicated on Drawings as needed to eliminate through-bolting hardware.

2.3 FABRICATION

- A. Factory fit doors to suit frame-opening sizes indicated.
 - 1. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
 - 2. Comply with NFPA 80 requirements for fire-rated doors.
- B. Factory machine doors for hardware that is not surface applied.
 - 1. Locate hardware to comply with DHI-WDHS-3.
 - 2. Comply with final hardware schedules, door frame Shop Drawings, ANSI/BHMA-156.115-W, and hardware templates.
 - 3. Coordinate with hardware mortises in metal frames, to verify dimensions and alignment before factory machining.
 - 4. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.

- 5. Metal Astragals: Factory machine astragals and formed-steel edges for hardware for pairs of fire-rated doors.
- C. Openings: Factory cut and trim openings through doors.
 - 1. Light Openings: Trim openings with moldings of material and profile indicated.
 - 2. Glazing: Comply with applicable requirements in Section 088000 "Glazing."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Hardware: For installation, see Section 087100 "Door Hardware."
- B. Install doors and frames to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
- C. Install frames level, plumb, true, and straight.
 - 1. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
 - 2. Install fire-rated doors and frames in accordance with NFPA 80.
 - 3. Install smoke- and draft-control doors in accordance with NFPA 105.
- D. Job-Fitted Doors:
 - 1. Align and fit doors in frames with uniform clearances and bevels as indicated below.
 - a. Do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors.
 - 2. Machine doors for hardware.
 - 3. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
 - 4. Clearances:
 - a. Provide 1/8 inch at heads, jambs, and between pairs of doors.
 - b. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated on Drawings.
 - c. Where threshold is shown or scheduled, provide1/4 inch from bottom of door to top of threshold unless otherwise indicated.
 - d. Comply with NFPA 80 for fire-rated doors.
 - 5. Bevel non-fire-rated doors 1/8 inch in 2 inches at lock and hinge edges.
 - 6. Bevel fire-rated doors 1/8 inch in 2 inches at lock edge; trim stiles and rails only to extent permitted by labeling agency.
- E. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.
- F. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.2 FIELD QUALITY CONTROL

A. Inspections:

- 1. Provide inspection of installed Work through AWI's Quality Certification Program , certifying that wood doors and frames, including installation, comply with requirements of AWI/AWMCA/WI's "Architectural Woodwork Standards" for the specified grade.
- 2. Fire-Rated Door Inspections: Inspect each fire-rated door in accordance with NFPA 80, Section 5.2.
- 3. Egress Door Inspections: Inspect each door equipped with panic hardware, each door equipped with fire exit hardware, each door located in an exit enclosure, each electrically controlled egress door, and each door equipped with special locking arrangements in accordance with NFPA 101, Section 7.2.1.15.
- B. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.
- C. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.
- D. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80 and NFPA 101.

3.3 ADJUSTING

- A. Operation: Rehang or replace doors that do not swing or operate freely.
- B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

SECTION 085113 - ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 SUMMARY

- A. Aluminum framed encapsulated mini-blind
 - 1. IE Blinds
 - a. www.ieblinds.com 14750 Hwy 64 Ben Wheeler, TX 75754 866 267-1917

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include plans, elevations, sections, hardware, accessories, insect screens, operational clearances, and details of installation, including anchor, flashing, and sealant installation.
- C. Samples: For each exposed product and for each color specified.

1.3 INFORMATIONAL SUBMITTALS

- A. Product test reports.
- B. Sample warranties.

1.4 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace aluminum windows that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. Window: 2 years from date of Substantial Completion.
 - b. Glazing Units: Five years from date of Substantial Completion.
 - c. Aluminum Finish: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 FRAMING SYSTEM FOR ALUMINUM WINDOWS

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following

- IE Blinds 2" x 4 1/2" anodized aluminum frame blind system

 Standard Tilt Knob blind controls
- B. Fasteners: Noncorrosive and compatible with window members, trim, hardware, anchors, and other components.
 - 1. Exposed Fasteners: Do not use exposed fasteners to greatest extent possible. For application of hardware, use fasteners that match finish hardware being fastened.

2.2 FABRICATION

A. Fabricate aluminum windows in sizes indicated. Include a complete system for assembling components and anchoring windows.

2.3 ALUMINUM FINISHES

A. Clear Anodized

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with manufacturer's written instructions for installing windows. For installation procedures and requirements not addressed in manufacturer's written instructions, comply with installation requirements in ASTM E2112.
- B. Install windows level, plumb, square, true to line, without distortion or impeding thermal movement, anchored securely in place to structural support, and in proper relation to wall flashing and other adjacent construction to produce weathertight construction.
- C. Separate aluminum and other corrodible surfaces from sources of corrosion or electrolytic action at points of contact with other materials.
- D. Clean exposed surfaces immediately after installing windows. Avoid damaging protective coatings and finishes. Remove excess sealants, glazing materials, dirt, and other substances.
- E. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.

SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Mechanical door hardware for the following:
 a. Swinging doors.
 - 2. Cylinders for door hardware specified in other Sections.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product in each finish specified.
- C. Door hardware schedule.
- D. Keying schedule.

1.3 INFORMATIONAL SUBMITTALS

A. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and of an Architectural Hardware Consultant who is available during the course of the Work to consult Contractor, Architect, and Owner about door hardware and keying.
 - 1. Scheduling Responsibility: Preparation of door hardware and keying schedule.
- B. Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
- C. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and

extent to that indicated for this Project and who is currently certified by DHI as an Architectural Hardware Consultant (AHC) .

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three years from date of Substantial Completion unless otherwise indicated below:
 - a. Exit Devices: Two years from date of Substantial Completion.
 - b. Manual Closers: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Rated Door Assemblies: Where fire-rated doors are indicated, provide door hardware complying with NFPA 80 that is listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
- B. Smoke- and Draft-Control Door Assemblies: Where smoke- and draft-control door assemblies are required, provide door hardware that complies with requirements of assemblies tested according to UL 1784 and installed in compliance with NFPA 105.
 - 1. Air Leakage Rate: Maximum air leakage of 0.3 cfm/sq. ft. at the tested pressure differential of 0.3-inch wg of water.
- C. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Means of Egress Doors: Latches do not require more than 15 lbf to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.
- E. Accessibility Requirements: For door hardware on doors in an accessible route, comply with the USDOJ's "2010 ADA Standards for Accessible Design" and Texas Accessibility Standards .

2.2 HINGES

- A. Hinges: BHMA A156.1. Provide template-produced hinges for hinges installed on hollowmetal doors and hollow-metal frames.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. McKinney Products Company; an ASSA ABLOY Group company.

2.3 CONTINUOUS HINGES

- A. Continuous Hinges: BHMA A156.26; minimum 0.120-inch- thick, hinge leaves with minimum overall width of 4 inches; fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete.
- B. Continuous, Gear-Type Hinges: Extruded-aluminum, pinless, geared hinge leaves joined by a continuous extruded-aluminum channel cap; with concealed, self-lubricating thrust bearings.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. McKinney Products Company; an ASSA ABLOY Group company.
 - b. Pemko; an ASSA ABLOY Group Company.

2.4 MECHANICAL LOCKS AND LATCHES

- A. Hospital Latch
 - 1. Sargent Series 7800 Mortise lock with Push/Pull Trim
 - 2. US 26D
- B. Lockset
 - 1. Sargent Series 7900 Mortise L Series
 - 2. US 26D
- C. Strikes: Provide manufacturer's standard strike for each lock bolt or latchbolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.
 - 1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
 - 2. Aluminum-Frame Strike Box: Manufacturer's special strike box fabricated for aluminum framing.

2.5 KEYING

- A. Keying System:
 - 1. Provide blank cores to match Hospital Standards. Keying by Owner

2.6 SURFACE CLOSERS

A. Surface Closers: BHMA A156.4; rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves and forged-steel main arm. Comply with manufacturer's written instructions for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Norton Door Controls; an ASSA ABLOY Group company.
 - 1) Norton #9500

2.7 MECHANICAL STOPS AND HOLDERS

- A. Wall- and Floor-Mounted Stops: BHMA A156.16.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Trimco.
 - b. Model 1211 Universal Floor Stop
 - c. Model 1270 Series Wall Bumpers

2.8 FINISHES

A. US26D unless noted otherwise

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights to comply with the following unless otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
 - 2. Custom Steel Doors and Frames: HMMA 831.
 - 3. Wood Doors: DHI's "Recommended Locations for Architectural Hardware for Wood Flush Doors."
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work. Do not install surface-mounted items until finishes have been completed on substrates involved.
- C. Hinges: Install types and in quantities indicated in door hardware schedule, but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.
- D. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 - 1. Replace construction cores with permanent cores as indicated in keying schedule .

- E. Key Control Cabinet: Tag keys and place them on markers and hooks in key control system cabinet, as determined by final keying schedule.
- F. Thresholds: Set thresholds for exterior doors and other doors indicated in full bed of sealant complying with requirements specified in Section 079200 "Joint Sealants."
- G. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.
- H. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
 - 1. Do not notch perimeter gasketing to install other surface-applied hardware.
- I. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.
- J. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.2 ADJUSTING

A. Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.3 DOOR HARDWARE SCHEDULE

A. Refer to drawings for functions to be incorporated into each opening.

SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Gypsum board, Type X.
 - 2. Gypsum ceiling board.
 - 3. Joint treatment materials.
 - 4. Acoustical sealant.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E90 and classified according to ASTM E413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

- A. Gypsum Board, Type X: ASTM C1396/C1396M.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Certainteed; SAINT-GOBAIN.
 - b. Georgia-Pacific Gypsum LLC.
 - c. National Gypsum Company.
 - d. USG Corporation 1.
 - 2. Thickness: 5/8 inch.

- B. Gypsum Ceiling Board: ASTM C1396/C1396M.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Certainteed; SAINT-GOBAIN.
 - b. Georgia-Pacific Gypsum LLC.
 - c. National Gypsum Company.
 - 2. Thickness: 5/8 inch.

2.4 TRIM ACCESSORIES

- A. Interior Trim: ASTM C1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc .
 - 2. Shapes:
 - a. Cornerbead.
 - b. Bullnose bead.
 - c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 - d. L-Bead: L-shaped; exposed long flange receives joint compound.
 - e. U-Bead: J-shaped; exposed short flange does not receive joint compound.
 - f. Expansion (control) joint.
 - g. Curved-Edge Cornerbead: With notched or flexible flanges.

2.5 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C475/C475M.
- B. Joint Tape:
 - 1. Interior Gypsum Board: Paper.
 - 2. Tile Backing Panels: As recommended by panel manufacturer.
- C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 - a. Use setting-type compound for installing paper-faced metal trim accessories.
 - 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
 - 4. Finish Coat: For third coat, use setting-type, sandable topping compound.
 - 5. Skim Coat: For final coat of Level 5 finish, use setting-type, sandable topping compound

2.6 AUXILIARY MATERIALS

.

A. Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.

- B. Steel Drill Screws: ASTM C1002 unless otherwise indicated.
 - 1. Use screws complying with ASTM C954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 - 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
- C. Sound-Attenuation Blankets: ASTM C665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
- D. Acoustical Sealant: As specified in Section 079219 "Acoustical Joint Sealants."
- E. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."

2.7 TEXTURE FINISHES

- A. Level 4 Finish
- B. Primer: As recommended by textured finish manufacturer.
- C. Non-Aggregate Finish: Premixed, vinyl texture finish for spray application.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. National Gypsum Company.
 - b. USG Corporation 1.
 - 2. Texture: smooth .

PART 3 - EXECUTION

3.1 INSTALLATION AND FINISHING OF PANELS

- A. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- B. Comply with ASTM C840.
- C. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- D. For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- E. Prefill open joints and damaged surface areas.

- F. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- G. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C840:
 - 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 4: Typical exposed areas.
 - a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

3.2 APPLYING TEXTURE FINISHES

A. Surface Preparation and Primer: Prepare and apply primer to gypsum panels and other surfaces receiving texture finishes. Apply primer to surfaces that are clean, dry, and smooth.

3.3 **PROTECTION**

- A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- B. Remove and replace panels that are wet, moisture damaged, and mold damaged.

SECTION 095123 - ACOUSTICAL TILE CEILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Acoustical tiles for interior ceilings.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 ACOUSTICAL TILES C1

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - 1. Armstrong World Industries, Inc.
 - a. Fissured #756 24 x 24 x 5/8
 - b. 15/16 Exposed Tee White
- B. Acoustical Tile Standard: Manufacturer's standard tiles of configuration indicated that comply with ASTM E1264.
- C. Color: White .
- D. Edge/Joint Detail: Square .

2.2 METAL SUSPENSION SYSTEM

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following

- 1. Armstrong Ceiling & Wall Solutions.
- B. Metal Suspension-System Standard: Manufacturer's standard, direct-hung, fully concealed, metal suspension system that complies with applicable requirements in ASTM C635/C635M.

2.3 ACCESSORIES

- A. Attachment Devices: Size for five times the design load indicated in ASTM C635/C635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
- B. Seismic Clips: Manufacturer's standard seismic clips designed to secure acoustical tiles in-place during a seismic event.

2.4 METAL EDGE MOLDINGS AND TRIM

A. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations complying with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for of suspension-system runners.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Measure each ceiling area and establish layout of acoustical tiles to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width tiles at borders unless otherwise indicated.
- B. Layout openings for penetrations centered on the penetrating items.

3.2 INSTALLATION OF SUSPENDED ACOUSTICAL TILE CEILINGS

- A. Install suspended acoustical tile ceilings according to ASTM C636/C636M and manufacturer's written instructions.
- B. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical tiles.
 - 1. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- C. Arrange directionally patterned acoustical tiles as indicated on reflected ceiling plans.

SECTION 096516.23 - VINYL SHEET FLOORING

PART 1 - PART 1 - GENERAL

1.1 1.01 SUMMARY

- A. Section Includes:
 - 1. Flooring and accessories as shown on the drawings and schedules and as indicated by the requirements of this section.

B. Related Documents

- 1. Drawings and General Provisions of the Contract (including General and Supplementary Conditions and Division 1 sections) apply to the work of this section.
- C. Related Sections:
 - 1. Other Division 9 sections for floor finishes related to this section but not the work of this section
 - 2. Division 6 Wood and Plastics; not the work of this section

1.2 REFERENCES

- A. ASTM International:
 - 1. ASTM E 648 Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source
 - 2. ASTM E 662 Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials
 - 3. ASTM F 710 Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring
 - 4. ASTM F 1913 Standard Specification for Sheet Vinyl Floor Covering without Backing
 - 5. ASTM F 1861 Standard Specification for Resilient Wall Base
 - 6. ASTM F 1869 Standard Test Method for Measuring Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride
 - 7. ASTM F 2170 Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes
- B. National Fire Protection Association (NFPA):
 - 1. NFPA 253 Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Energy Source
 - 2. NFPA 258 Standard Test Method for Measuring the Smoke Generated by Solid Materials
1.3 SYSTEM DESCRIPTION

- A. Performance Requirements: Provide flooring which has been manufactured, fabricated, and installed to performance criteria certified by manufacturer without defects, damage, or failure.
- B. Administrative Requirements
 - 1. Pre-installation Meeting: Conduct an on-site pre-installation meeting to verify project requirements, substrate conditions, manufacturer's installation instructions and manufacturer's warranty requirements. Comply with Division 1 Project Management and Coordination (Project Meetings) Section.
 - 2. Pre-installation Testing: Conduct pre-installation testing as follows: [Specify testing (i.e., moisture tests, bond test, pH test, etc.)
- C. Sequencing and Scheduling
 - 1. Install flooring and accessories after the other finishing operations, including painting, have been completed. Close spaces to traffic during the installation of the flooring.
 - 2. Do not install flooring over concrete slabs until they are sufficiently dry to achieve a bond with the adhesive, in accordance with the manufacturer's recommended bond, moisture tests and pH test.

1.4 SUBMITTALS

- A. Submit shop drawings, seaming plan, coving details, and manufacturer's technical data, installation and maintenance instructions for flooring and accessories.
- B. Submit the manufacturer's standard samples showing the required colors for flooring, welding rods, and applicable accessories.
- C. Submit Safety Data Sheets (SDS) available for adhesives, weld rod, moisture mitigation systems, primers, patching/leveling compounds, floor finishes (polishes) and cleaning agents and Material Information Sheets for flooring products.
- D. If required, submit the manufacturer's certification that the flooring has been tested by an independent laboratory and complies with the required fire tests.
- E. Closeout Submittals: Submit the following:
 - 1. Operation and Maintenance Data: Operation and maintenance data for installed products in accordance with Division 1 Closeout Submittals (Maintenance Data and Operation Data) Section. Include methods for maintaining installed products, and precautions against cleaning materials and methods detrimental to finishes and performance.
 - 2. Warranty: Warranty documents specified herein

1.5 QUALITY ASSURANCE

- A. Single-Source Responsibility: provide types of flooring and accessories supplied by one manufacturer, including moisture mitigation systems, primers, leveling and patching compounds, and adhesives.
- B. Select an installer who is experienced and competent in the installation of Armstrong resilient sheet flooring using heat-welded seams and the use of Armstrong Flooring subfloor preparation products.
 - 1. Engage installers certified as Armstrong Commercial Flooring Certified Installers
 - 2. Confirm installer's certification by requesting their credentials
- C. Fire Performance Characteristics: Provide resilient vinyl sheet flooring with the following fire performance characteristics as determined by testing material in accordance with ASTM test methods indicated below by a certified testing laboratory or other testing agency acceptable to authorities having jurisdiction:
 - 1. ASTM E 648 Critical Radiant Flux of 0.45 watts per sq. cm. or greater, Class I
 - 2. ASTM E 662 (Smoke Generation) Maximum Specific Optical Density of 450 or less
 - 3. CAN/ULC-S102.2 Flame Spread Rating and Smoke Developed Results as tested

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Comply with Division 1 Product Requirements Sections
- B. Comply with manufacturer's ordering instructions and lead time requirements to avoid construction delays.
- C. Deliver materials in good condition to the jobsite in the manufacturer's original unopened containers that bear the name and brand of the manufacturer, project identification, and shipping and handling instructions.
- D. Store materials in a clean, dry, enclosed space off the ground, protected from harmful weather conditions and at temperature and humidity conditions recommended by the manufacturer. Protect adhesives from freezing. Store flooring, adhesives, and accessories in the spaces where they will be installed for at least 48 hours before beginning installation.

1.7 PROJECT CONDITIONS

A. Maintain a minimum temperature in the spaces to receive the flooring and accessories of 65°F (18°C) and a maximum temperature of 100°F (38°C) for at least 48 hours before, during, and for not less than 48 hours after installation. Thereafter, maintain a minimum temperature of 55°F (13°C) in areas where work is completed. Protect all materials from the direct flow of heat from hot-air registers, radiators, or other heating fixtures and appliances. Refer to product installation recommendations for a complete guide on project conditions.

1.8 LIMITED WARRANTY

- A. A.Resilient Flooring: Submit a written warranty executed by the manufacturer, agreeing to repair or replace resilient flooring that fails within the warranty period.
- B. Limited Warranty Period: 10 years.
- C. The Limited Warranty shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and will be in addition to and run concurrent with other warranties made by the Contractor under the requirements of the Contract Documents.
- D. For the Limited Warranty to be valid, this product is required to be installed using the appropriate Armstrong Flooring Guaranteed Installation System. Product installed not using the specific instructions from the Guaranteed Installation System will void the warranty.

1.9 EXTENDED SYSTEM LIMITED WARRANTY

- A. Resilient Flooring System: Submit a written warranty executed by the manufacturer, agreeing to repair or replace system (subfloor preparation products, adhesive, and floor covering) that fails within the warranty period.
- B. Limited Warranty Period: 10 years on top of the Resilient Flooring Limited Warranty
- C. S-466 Patch Strong[™] flexible patching and smoothing compound
- D. The installation of an Armstrong Flooring product along with the recommended Armstrong Flooring adhesive, as well as any one of the Strong System subfloor preparation products listed above, provides 10 additional years of limited warranty coverage. The Strong System limited warranty covers the installation integrity for the length of the flooring product warranty plus 10 years. To qualify for the Strong System Warranty, any subfloor preparation product needed for an installation must be an Armstrong Flooring product.
- E. For the System Limited Warranty to be valid, this product is required to be installed using the appropriate Armstrong Flooring Guaranteed Installation System. Product installed not using the specific instructions from the Guaranteed Installation System will void the warranty.
- F. When Armstrong Flooring Strong System subfloor preparation products are used with other manufacturers' floor coverings, adhesives, or other subfloor preparation products, Armstrong Flooring warrants our products to be free from manufacturing defects from the date of purchase through the limited warranty period of 20 years.

1.10 MAINTENANCE

- A. Extra Materials: Deliver extra materials to Owner. Furnish extra materials from same production run as products installed. Packaged with protective covering for storage and identified with appropriate labels.
 - 1. Quantity: Furnish quantity of flooring units equal to []% of amount installed.

2. Delivery, Storage and Protection: Comply with Owner's requirements for delivery, storage, and protection of extra material.

PART 2 - PART 2 - PRODUCTS

2.1 MANUFACTURER

- A. A. Resilient sheet flooring, wall base, adhesives, and accessories:
 - 1. Armstrong Flooring Inc., 1770 Hempstead Road, Lancaster, PA 17605, www.armstrongflooring.com/commercial.
 - 2. Manufacturer must have a headquarters in the United States of America.

2.2 RESILIENT SHEET FLOORING MATERIALS

- A. Provide Homogeneous Sheet Vinyl Flooring: Medintech® with Diamond 10® Technology manufactured by Armstrong Flooring Inc.
 - 1. Description: An unbacked, nonlayered, homogeneous sheet vinyl flooring. Protected by a diamond-infused UV-cured polyurethane finish, the colors and pattern detail are dispersed uniformly throughout the thickness of the product. Color pigments are insoluble in water and resistant to cleaning agents and light.
 - 2. Homogeneous sheet flooring shall conform to the requirements of ASTM F1913 Standard Specification for Vinyl Sheet Floor Covering Without Backing
 - 3. Pattern and Color: in color selected from the range currently available from Armstrong Flooring Inc.
 - 4. Width: 6 ft. 7 in. (2.0 m).
 - 5. Length: up to 65.6 lineal feet (20 meters)
 - 6. Thickness: 0.080 in. (2.0 mm)
- B. Weld Rod:
 - 1. Provide solid color vinyl weld rod as produced by Armstrong Flooring Inc. and intended for heat welding of seams. Color shall be compatible with field color of flooring or as selected by Architect to contrast with field color of flooring. Color selected from the range currently available from Armstrong Flooring Inc.

2.3 PRODUCT SUBSTITUTION

A. Substitutions: No substitutions permitted because of the specific attributes listed in Section 2.02.

2.4 WALL BASE MATERIALS

A. For integral flash cove base: Provide integral flash cove wall base by extending sheet flooring 6 in. (15.24 cm) up the wall using adhesive, welding rod, and accessories recommended and approved by the flooring manufacturer.

2.5 ADHESIVES

2.6 Provide Armstrong [S-995 Vinyl Sheet Flooring Adhesive Premium Commercial adhesive for field areas and Armstrong [S-580 Flash Cove Adhesive at flash coving] [S-725 Wall Base Adhesive at the wall base] as recommended by the flooring manufacturer.

2.7 ACCESSORIES

- A. For patching, smoothing, and leveling monolithic subfloors (concrete, terrazzo, quarry tile, ceramic tile, and certain metals), provide Armstrong S-194 Cement-Based Patch, Underlayment and Embossing Leveler / S-195 Underlayment Additive .
- B. For sealing joints between the top of wall base or integral cove cap and irregular wall surfaces such as masonry, provide plastic filler applied according to the manufacturer's recommendations.
- C. Provide top edge trim caps of [**plastic**] anodized aluminum [**plastic zero reducer**] for integral flash cove as approved by the Architect.
- D. Provide a fillet support strip for integral cove base with a minimum radius of 1 in. (2.54 cm) of wood or plastic.
- E. Provide transition/reducing strips tapered to meet abutting materials.
- F. Provide threshold of thickness and width as shown on the drawings.
- G. Provide resilient edge strips of width shown on the drawings, of equal gauge to the flooring, homogeneous vinyl, or rubber composition, tapered or bullnose edge, with color to match or contrast with the flooring, or as selected by the Architect from standard colors available.
- H. Provide metal edge strips of width shown on the drawings and of required thickness to protect exposed edges of the flooring. Provide units of maximum available length to minimize the number of joints. Use butt-type metal edge strips for concealed anchorage or overlap.

PART 3 - PART 3 - EXECUTION

3.1 MANUFACTURER'S INSTRUCTIONS

A. Compliance: Comply with manufacturer's product data, including technical bulletins, product catalog, installation instructions, and product carton instructions for installation and maintenance procedures as needed.

3.2 EXAMINATION

A. Site Verification of Conditions: Verify substrate conditions (which have been previously installed under other sections) are acceptable for product installation in accordance with manufacturer's instructions (i.e., moisture tests, bond test, pH test, etc.).

- B. Visually inspect flooring materials, adhesives, and accessories prior to installation. Flooring material with visual defects shall not be installed and shall not be considered as a legitimate claim.
- C. Examine subfloors prior to installation to determine that surfaces are smooth and free from cracks, holes, ridges, and other defects that might prevent adhesive bond or impair durability or appearance of the flooring material.
- D. Inspect subfloors prior to installation to determine that surfaces are free from curing, sealing, parting and hardening compounds; residual adhesives; adhesive removers; and other foreign materials that might prevent adhesive bond. Visually inspect for evidence of moisture, alkaline salts, carbonation, dusting, mold, or mildew.
- E. Report conditions contrary to contract requirements that would prevent a proper installation. Do not proceed with the installation until unsatisfactory conditions have been corrected.
- F. Failure to call attention to defects or imperfections will be construed as acceptance and approval of the subfloor. Installation indicates acceptance of substrates regarding conditions existing at the time of installation.

3.3 PREPARATION

- A. Subfloor Cleaning: The surface shall be free of dust, solvents, varnish, paint, wax, oil, grease, sealers, release agents, curing compounds, residual adhesive, adhesive removers, and other foreign materials that might affect the adhesion of resilient flooring to the concrete or cause a discoloration of the flooring from below. Remove residual adhesives as recommended by the flooring manufacturer. Remove curing and hardening compounds not compatible with the adhesives used, as indicated by a bond test or by the compound manufacturer's recommendations for flooring. Avoid organic solvents. Spray paints, permanent markers and other indelible ink markers must not be used to write on the back of the flooring material or used to mark the concrete slab as they could bleed through, telegraphing up to the surface and permanently staining the flooring material. If these contaminants are present on the substrate, they must be mechanically removed prior to the installation of the flooring material. Refer to the product installation recommendations and ASTM F 710 Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring for additional information on subfloor preparation.
- B. When using S-995 Adhesive, perform subfloor moisture testing in accordance with ASTM F 2170, "Standard Test Method for Determining Relative Humidity in Concrete Slabs Using insitu Probes" and Bond Tests as described in the Armstrong Flooring Guaranteed Installation System to determine if surfaces are dry; free of curing and hardening compounds, old adhesive, and other coatings; and ready to receive flooring. Internal relative humidity of the concrete shall not exceed 95%. On installations where both the Percent Relative Humidity and the Moisture Vapor Emission Rate tests are conducted, results for both tests shall comply with the allowable limits listed above. Do not proceed with flooring installation until results of moisture tests are acceptable. All test results shall be documented and retained.
- C. Concrete pH Testing: Perform pH tests on concrete floors regardless of their age or grade level. All test results shall be documented and retained.

3.4 INSTALLATION OF FLOORING

- A. Install flooring in strict accordance with the latest edition of the flooring installation recommendations. Failure to comply may result in voiding the manufacturer's warranty listed in Section 1.08.
- B. Install flooring wall to wall before the installation of floor-set cabinets, casework, furniture, equipment, movable partitions, etc. Extend flooring into toe spaces, door recesses, closets, and similar openings as shown on the drawings.
- C. If required, install flooring on pan-type floor access covers. Maintain continuity of color and pattern within pieces of flooring installed on these covers. Adhere flooring to the subfloor around covers and to covers.
- D. Scribe, cut, and fit or flash cove to permanent fixtures, columns, walls, partitions, pipes, outlets, and built-in furniture and cabinets.
- E. Adhere flooring to the subfloor without cracks, voids, raising and puckering at the seams. Roll with a 100-pound (45.36 kilogram) roller in the field areas. Hand-roll flooring at the perimeter and the seams to assure adhesion. Refer to specific rolling instructions of the flooring manufacturer.
- F. Lay flooring to provide a minimum number of seams. Avoid cross seams, filler pieces, and strips. Match edges for color shading and pattern at the seams in compliance with the manufacturer's recommendations.
- G. Install flooring with adhesives, tools, and procedures in strict accordance with the manufacturer's written instructions. Observe the recommended adhesive trowel notching, open times, and working times.
- H. Prepare heat-welded seams with special routing tool supplied for this purpose and heat weld with vinyl welding rod in seams. Use methods and sequence of work in conformance with written instructions of the flooring manufacturer. Finish all seams flush and free from voids, recesses, and raised areas.
- I. Provide integral flash cove wall base where shown on the drawings, including cove fillet support strip and top edge cap trim. Construct flash cove base in accordance with the flooring manufacturer's instructions. Heat-weld seams [seam adhesive] as specified for those on the floor.

3.5 3.05 INSTALLATION OF ACCESSORIES

- A. Apply top set wall base to walls, columns, casework, and other permanent fixtures in areas where top-set base is required. Install base in lengths if practical, with inside corners fabricated from base materials that are mitered or coped. Tightly bond base to vertical substrate with continuous contact at horizontal and vertical surfaces.
- B. Fill voids with plastic filler along the top edge of the resilient wall base or integral cove cap on masonry surfaces or other similar irregular substrates.

C. Place resilient edge strips tightly butted to flooring, and secure with adhesive recommended by the edge strip manufacturer. Install edge strips at edges of flooring that would otherwise be exposed.

3.6 3.06 CLEANING

A. Perform initial and on-going maintenance according to the latest edition of the maintenance recommendations for Homogeneous Sheet Flooring.

3.7 3.07 PROTECTION

A. Protect installed flooring as recommended by the flooring manufacturer against damage from rolling loads, other trades, or the placement of fixtures and furnishings. (See Finishing the Job in the latest edition of Armstrong Flooring Guaranteed Installation Systems manual.

END OF SECTION 096516.23

SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Primers.
 - 2. Water-based finish coatings.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each type of topcoat product.
- C. Product Schedule: Use same designations indicated on Drawings and in the Interior Painting Schedule to cross-reference paint systems specified in this Section. Include color designations.

1.3 QUALITY ASSURANCE

A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - 1. Sherwin-Williams Company (The).

2.2 PAINT PRODUCTS, GENERAL

- A. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

B. Colors: As selected by Architect from manufacturer's full range .

2.3 PRIMERS

- A. Interior Latex Primer Sealer: Water-based latex sealer used on new interior plaster, concrete, and gypsum wallboard surfaces.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).
- B. Water-Based Rust-Inhibitive Primer: Corrosion-resistant, water-based-emulsion primer formulated for resistance to flash rusting when applied to cleaned, interior ferrous metals subject to mildly corrosive environments.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).
- C. Water-Based Galvanized-Metal Primer: Corrosion-resistant, acrylic primer; formulated for use on cleaned/etched, exterior, galvanized metal to prepare it for subsequent water-based coatings.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).
- D. Water-Based Bonding Primer: Water-based-emulsion primer formulated to promote adhesion of subsequent specified coatings.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).

2.4 WATER-BASED FINISH COATS

- A. Interior, Latex, Flat: Pigmented, water-based paint for use on primed/sealed interior plaster and gypsum board, and on primed wood and metals.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).
- B. Interior, Latex, Eggshell: Pigmented, water-based paint for use on primed/sealed interior plaster and gypsum board, and on primed wood and metals.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).

- 2. Gloss and Sheen Level: Manufacturer's standard eggshell finish Gloss of 10 to 25 units at 60 degrees and sheen of 10 to 35 units at 85 degrees when tested in accordance with ASTM D523.
- C. Interior, Latex, Semigloss: Pigmented, water-based paint for use on primed/sealed interior plaster and gypsum board, and on primed wood and metals.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).
 - 2. Gloss Level: Manufacturer's standard semigloss finish .
- D. Interior, Latex, High-Performance Architectural Coating, Eggshell: High-performance architectural latex coating providing a significantly higher level of performance than conventional latex paints in the areas of scrub resistance, burnish resistance, and ease of stain removal.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).
 - 2. Gloss and Sheen Level: Gloss of 10 to 25 units at 60 degrees and sheen of 10 to 35 units at 85 degrees when tested in accordance with ASTM D523.
- E. Interior, Latex, High-Performance Architectural Coating, Semigloss: High-performance architectural latex coating providing a significantly higher level of performance than conventional latex paints in the areas of scrub resistance, burnish resistance, and ease of stain removal.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following
 - a. Sherwin-Williams Company (The).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- B. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations applicable to substrates and paint systems indicated.

- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
- C. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

3.3 INSTALLATION

- A. Apply paints according to manufacturer's written instructions.
- B. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 CLEANING AND PROTECTION

- A. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- B. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- C. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 INTERIOR PAINTING SCHEDULE

- A. Steel Substrates:
 - 1. Latex over Shop-Applied Quick-Drying Shop Primer System :
 - a. Prime Coat: Quick-dry primer for shop application.
 - b. Intermediate Coat: Matching topcoat.
 - c. Topcoat: Interior, latex, semi-gloss.
- B. Galvanized-Metal Substrates:
 - 1. Water-Based Light-Industrial Coating System :
 - a. Prime Coat: Cementitious galvanized primer.
 - b. Intermediate Coat: Matching topcoat.
 - c. Topcoat: Interior, water-based, light-industrial coating, semigloss .
- C. Gypsum Board Substrates:
 - 1. Latex over Latex Sealer System :
 - a. Prime Coat: Interior latex primer sealer.
 - b. Intermediate Coat: Matching topcoat.

c. Topcoat: Interior, latex, eggshell .

END OF SECTION 099123

SECTION 102600 - WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Wall guards.
 - 2. Impact-resistant handrails.
 - 3. Corner guards.

B. Related Requirements:

- 1. Section 064023 "Interior Architectural Woodwork for solid-wood handrails, bumper rails, chair rails, or corner moldings without plastic bumpers.
- 2. Section 087100 "Door Hardware" for metal and plastic protective trim units, according to BHMA A156.6, used for armor, kick, mop, and push plates.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For each type of wall and door protection showing locations and extent.
 - 1. Include plans, elevations, sections, and attachment details. Show handrail design and support spacing required to withstand structural loads.
- C. Samples: For each exposed product and for each color and texture specified, 12 inches long.

1.3 INFORMATIONAL SUBMITTALS

- A. Product certificates.
- B. Material certificates.
- C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of wall- and doorprotection units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface Burning Characteristics: Comply with ASTM E84 or UL 723; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 450 or less.
- B. Regulatory Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and Texas Accessibility Standards .

2.2 WALL GUARDS

- A. Handrail / Crash Rail: Heavy-dutyassembly consisting of continuous snap-on plastic cover installed over concealed retainer; designed to withstand impacts, and solid wood handrail with stainless steel returns
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

a. Inpro Corporation.

- 2. Specified: Inpro 3500WV Silhouette Handrail with Stainless Steel #4 satin finish handrail returns and corners. Vinyl crash rail with red oak wood stained finish handrail. Exposed surfaces of brackets shall be #4 satin finish
- 3. Cover: Extruded rigid plastic, minimum 0.100-inch wall thickness; in dimensions and profiles indicated on Drawings.
 - a. Surface: Uniform .
 - b. Color and Texture: As selected by Architect from manufacturer's full range .
- 4. Continuous Retainer: Minimum 0.080-inch- thick, one-piece, extruded aluminum.
- 5. Retainer Clips: Manufacturer's standard impact-absorbing clips designed for heavy-duty performance.
- 6. Bumper: Continuous, resilient bumper cushion(s).
- 7. End Caps and Corners: Prefabricated, injection-molded plastic; matching color contrasting with color cover; field adjustable for close alignment with snap-on cover.
- 8. Accessories: Concealed splices and mounting hardware.
- 9. Mounting: Surface mounted directly to wall .
- B. Bumper / Rub Rail : Standard-duty assembly consisting of continuous snap-on plastic cover installed over concealed retainer; designed to withstand impacts.

1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

a. Inpro Corporation.

- 2. Specified: Inpro 1800, 8" high wall protection, extending 1 1/16" from wall.
- 3. Cover: Extruded rigid plastic, minimum 0.080-inch wall thickness; in dimensions and profiles indicated on Drawings.
 - a. Color and Texture: As selected by Architect from manufacturer's full range .
- 4. Continuous Retainer: Minimum 0.080-inch- thick, one-piece, extruded aluminum.
- 5. Retainer Clips: Manufacturer's standard impact-absorbing clips.
- 6. Bumper: Continuous, resilient bumper cushion(s).
- 7. End Caps and Corners: Prefabricated, injection-molded plastic; matching color cover; field adjustable for close alignment with snap-on cover.
- 8. Accessories: Concealed splices and mounting hardware.
- 9. Mounting: Surface mounted directly to wall .
- C. Rigid Vinyl Sheetl: Standard-duty assembly consisting of continuous snap-on cover installed over concealed, continuous retainer.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Inpro Corporation.
 - 2. Specified: Inpro Palladium Rigid Vinyl Sheet #406, .060 thickness, woth vinyl trim for outside corners, top cap, vertical divider bars, and inside corners.
 - 3. Corners, top caps and vertical dividers: Prefabricated, extruded PVC; color matching; field installed.
 - 4. Accessories: Concealed splices and mounting hardware.
 - 5. Mounting: Adhere to substrate with Fastbond 30, a nonflammable, high strength, waterdispersed contact adhesive, with very little odor. Smooth roll surface.

2.3 CORNER GUARDS

- A. Surface-Mounted, Plastic-Cover Corner Guards : Manufacturer's standard assembly consisting of snap-on, resilient plastic cover installed over retainer; including mounting hardware; fabricated with 90- or 135-degree turn to match wall condition.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Inpro Corporation.
 - 2. Specified:
 - a. Inpro 150
 - b. Inpro 160D
 - 3. Cover: Extruded rigid plastic, minimum 0.080-inch wall thickness; in dimensions and profiles indicated on Drawings.
 - a. Color and Texture: As selected by Architect from manufacturer's full range .
 - 4. Continuous Retainer: Minimum 0.070-inch- thick, one-piece, extruded aluminum .
 - 5. Retainer Clips: Manufacturer's standard impact-absorbing clips.
 - 6. Top and Bottom Caps: Prefabricated, injection-molded plastic; color matching cover; field adjustable for close alignment with snap-on cover.
 - 7. Extend from top of wall base to ceiling.

2.4 MATERIALS

- A. Plastic Materials: Chemical- and stain-resistant, high-impact-resistant plastic with integral color throughout; extruded and sheet material as required, thickness as indicated.
- B. Polycarbonate Plastic Sheet: ASTM D6098, S-PC01, Class 1 or Class 2, abrasion resistant; with a minimum impact-resistance rating of 15 ft.-lbf/in. of notch when tested according to ASTM D256, Test Method A.
- C. Fasteners: Aluminum, nonmagnetic stainless-steel, or other noncorrosive metal screws, bolts, and other fasteners compatible with items being fastened. Use security-type fasteners where exposed to view.
- D. Adhesive: As recommended by protection product manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation Quality: Install wall and door protection according to manufacturer's written instructions, level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.
- B. Mounting Heights: Install wall and door protection in locations and at mounting heights indicated on Drawings.
- C. Accessories: Provide splices, mounting hardware, anchors, trim, joint moldings, and other accessories required for a complete installation.
 - 1. Provide anchoring devices and suitable locations to withstand imposed loads.
 - 2. Where splices occur in horizontal runs of more than 20 feet, splice aluminum retainers and plastic covers at different locations along the run, but no closer than 12 inches apart.
 - 3. Adjust end and top caps as required to ensure tight seams.

END OF SECTION 102600

SECTION 21 13 13 – WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Cover system for sprinkler piping.
 - 3. Specialty valves.
 - 4. Sprinklers.
 - 5. Alarm devices.
 - 6. Control panels.
 - 7. Pressure gages.

- B. Furnish all materials, labor, tools, equipment and working plans to install and place into operation the complete Fire Protection System (Automatic Wet Pipe Sprinkler System) for the entire building in accordance with the attached plans and as specified herein.
- C. All work shall meet requirements of the latest edition of the National Fire Protection Association (NFPA), Texas Fire Marshal.
- D. Prior to start of the design of the fire protection system, the contractor shall coordinate and complete the forms required by the local and state AHJs.
- E. Sprinkler contractor shall visit site and familiarize himself with all existing conditions, examine plans and specifications to determine building conditions and coordinate with work being performed by other trades. Contractor shall make note that all calculations and plans required by the State Fire Marshal shall be provided by Sprinkler Contractor.
- F. Each bidder shall be licensed to perform sprinkler work in the State of Texas and shall be recognized by Property Insurance Association of Texas as a reliable sprinkler contractor.
- G. Sprinkler Contractor shall include in his price all offsets required in order to avoid conflict with ductwork, lights, grilles, air boxes, etc. All offsets shall be made above intersecting ducts or pipes in order to minimize trapping of water. Contractor shall coordinate installation of his piping with all other trades to assure that they can all fit in the space provided. In general, sprinkler piping shall be run at maximum height above finished floor or between joists in order to minimize conflict with different trades. In areas where joists are exposed, lines shall be run at bottom of roof deck, between or through joists.

- H. Contractor shall make note that sprinkler piping layout and sprinkler head locations are diagrammatic and all spaces shall have proper number of heads and proper pipe size in contractors price.
- I. Contractor shall also obtain latest flow data for local utility company and assure himself prior to bid that adequate pressures and flow are available for the system he intends to provide.

1.3 REQUEST FOR APPEAL

- A. The Contractor shall be required to complete any and all "Appeals" to the State Fire Marshal's Office required to clear review comments associated with shop drawings. The Contractor shall be required to complete the Appeal Forms and provide associated appeal costs for appeals associated with the project.
 - 1. Example of Appeals including but not limited to: Sprinkler head type below stands, Low Suction Control Valve required by DHH on Fire Pump applications, etc.

1.4 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.5 PAINTING

- A. All painting shall be by the general contractors painting sub-contractor. All pipe, pipe covering, equipment, supports, hangers, etc. Exposed in the building or equipment room shall be painted. This contractor shall prepare the surface of the material to receive the first coat of paint.
- B. All subsequent coatings shall be prepared by the painting sub-contractor. Requirements covering paints, workmanship and preparation of surfaces as stated in the architectural specifications shall govern. Colors shall be approved by the architect. All piping shall be color-coded.
- C. All piping shall be color coded per the following:
 1. Fire Protection Piping (Exposed in Building) Red (Color to be selected by Architect)

1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For wet-pipe sprinkler systems.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include diagrams for power, signal, and control wiring.

- 3. Shop drawings shall be prepared by the contractor before commencing fire protection installation. The shop drawings shall be detailed as required by the State Fire Marshal's Office and submitted through the Architect to the following for approval:
 - a. State Fire Marshal.
 - b. Local Fire Prevention Bureau.
- 4. Provide review application fee as required by the State Fire Marshal. Contractor shall pay all applicable fees required for the project thru completion of project.
- 5. All shop drawings plans and elevations shall be made at 1/8" scale and arranged same as contract drawings.
- 6. Provide scaled site plan.
- C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed by the qualified NICET certified designer responsible for their preparation.

1.7 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Domestic water piping
 - 2. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
- B. Qualification Data: For qualified Installer and NICET designer.
- C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
- D. Fire-hydrant flow test report.
- E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractors Material and Test Certificate for Aboveground Piping."
- F. Field quality-control reports.

1.8 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.9 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.10 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installers responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified designer.
 - b. The contractor shall be a qualified fire protection contractor, licensed by the State of Louisiana and directly engaged in the installation of automatic fire sprinkler systems and other fire protection equipment.
- B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.11 FIELD CONDITIONS

- A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 - 1. Notify Architect no fewer than two days in advance of proposed interruption of sprinkler service.
 - 2. Do not proceed with interruption of sprinkler service without Architects written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13.
- B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- C. Delegated Design: Engage a qualified designer to design wet-pipe sprinkler systems.
 - 1. Conduct a fire-hydrant flow test and indicate the following conditions:
 - a. Date:
 - b. Time:
 - c. Performed by:
 - d. Location of Residual Fire Hydrant R:
 - e. Location of Flow Fire Hydrant F:

- f. Static Pressure at Residual Fire Hydrant R:
- g. Measured Flow at Flow Fire Hydrant F:
- h. Residual Pressure at Residual Fire Hydrant R:
- 2. Sprinkler system design shall be approved by authorities having jurisdiction.
 - a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 - b. Sprinkler Occupancy Hazard Classifications as per NFPA.
- 3. Minimum Density for Automatic-Sprinkler Piping Design as per NFPA:
- 4. Maximum Protection Area per Sprinkler: According to UL listing.

2.2 STEEL PIPE AND FITTINGS

- A. Standard-Weight, SCHEDULE 40 Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.
- B. Schedule 10, Black-Steel Pipe: ASTM A 135/A 135M or ASTM A 795/A 795M, Schedule 10 in NPS 4 to NPS 5; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.
- C. Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- D. Galvanized- and Uncoated-Steel Couplings: ASTM A 865/A 865M, threaded.
- E. Malleable- or Ductile-Iron Unions: UL 860.
- F. Cast-Iron Flanges: ASME 16.1, Class 125.
- G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 - 1. Pipe-Flange Gasket Materials: EPDM rubber gasket.
 - a. Class 125 and Class 250, Cast-Iron, Flat-Face Flanges: Full-face gaskets.
 - b. Class 150 and Class 300, Ductile-Iron or -Steel, Raised-Face Flanges: Ring-type gaskets.
 - 2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.
- H. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
 - 1. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- I. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Pressure Rating: 175-psig minimum.
 - 2. Galvanized Painted Uncoated Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting, with dimensions matching steel pipe.
 - 3. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 SPECIALTY VALVES

- A. Listed in ULs "Fire Protection Equipment Directory" or FM Globals "Approval Guide."
- B. Pressure Rating:
 1. Standard-Pressure Piping Specialty Valves: 175-psig minimum.
- C. Body Material: Cast or ductile iron.
- D. Size: Same as connected piping.
- E. End Connections: Flanged or grooved.

2.4 SPRINKLERS

- A. Manufacturers shall be one of the following:
 - 1. Viking Corporation.
 - 2. Reliable Automatic Sprinkler Co.
 - 3. Grinnel.
 - 4. Tyco Fire & Building Products.
- B. Listed in ULs "Fire Protection Equipment Directory" or FM Globals "Approval Guide."
- C. Pressure Rating for Residential Sprinklers: 175-psig maximum.
- D. Pressure Rating for Automatic Sprinklers: 175-psig minimum.
- E. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Early-Suppression, Fast-Response Applications: UL 1767.
 - 2. Nonresidential Applications: UL 199.
 - 3. Residential Applications: UL 1626.
 - 4. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
- F. Open Sprinklers with Heat-Responsive Element Removed: UL 199.
 - 1. Nominal Orifice: 1/2 inch, with discharge coefficient K between 5.3 and 5.8.
- G. Sprinkler Finishes: Chrome plated.
- H. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
- I. Sprinkler Guards:
 - 1. Standard: UL 199.
 - 2. Type: Wire cage with fastening device for attaching to sprinkler.

2.5 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Electrically Operated Alarm Bell:
 - 1. Standard: UL 464.
 - 2. Type: Vibrating, metal alarm bell.
 - 3. Size: [6-inch minimum-] [8-inch minimum-] [10-inch] diameter.
 - 4. Finish: Red-enamel factory finish, suitable for outdoor use.
 - 5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application
- C. Water-Flow Indicators:
 - 1. Standard: UL 346.
 - 2. Water-Flow Detector: Electrically supervised.
 - 3. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 4. Type: Paddle operated.
 - 5. Pressure Rating: 250 psig.
 - 6. Design Installation: Horizontal or vertical.
- D. Pressure Switches:
 - 1. Standard: UL 346.
 - 2. Type: Electrically supervised water-flow switch with retard feature.
 - 3. Components: Single-pole, double-throw switch with normally closed contacts.
 - 4. Design Operation: Rising pressure signals water flow.
- E. Valve Supervisory Switches:
 - 1. Standard: UL 346.
 - 2. Type: Electrically supervised.
 - 3. Components: Single-pole, double-throw switch with normally closed contacts.
 - 4. Design: Signals that controlled valve is in other than fully open position.
 - 5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application

2.6 PRESSURE GAGES

- A. Standard: UL 393.
- B. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- C. Pressure Gage Range: 0- to 250-psig minimum.
- D. Label: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
- B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

- A. Reuse existing water-service piping for service entrance to building.
- B. Reuse the existing shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.3 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
 - 2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.
- B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.
- C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- D. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- F. Install "Inspectors Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- G. Install sprinkler piping with drains for complete system drainage.
- H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

- J. Install alarm devices in piping systems.
- K. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.
- L. Fill sprinkler system piping with water.
- M. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing.
- N. Install sleeves for piping penetrations of walls, ceilings, and floors.
- O. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than systems pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.
- I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

- 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:
 - 1. Install valves in vertical position for proper direction of flow, in main supply to system.
 - 2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.

3.6 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.
- B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.
- C. Install sprinklers with stainless steel braided fully welded flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid. Flexible hose shall not use gaskets and shall be true 1" hose sizes.

3.7 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals.

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required.
 - 6. Verify that equipment hose threads are same as local fire department equipment. Provide letter to Architect with the approval of the thread type by the local fire department equipment.
- B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.10 DEMONSTRATION

A. Train Owners maintenance personnel to adjust, operate, and maintain specialty valves.

3.11 PIPE HANGERS AND SUPPORTS

- A. This Contractor shall furnish and install all foundations and supports required for his equipment unless indicated otherwise on the Drawings.
- B. This Contractor shall furnish and install all escutcheons, inserts, thimbles, hangers, saddles, etc. required for the proper support and installation of his equipment and piping and he shall cooperate with other trades in locating and placing these items.

3.12 PIPING SCHEDULE

- A. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends, cast-iron threaded fittings, and threaded grooved ends, grooved-end fittings, grooved-end-pipe couplings, and grooved joints.
- B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
- C. Piping within the building 4" and smaller shall be Schedule 40 black steel pipe with threaded fittings. Piping larger than 4" shall be Schedule 40 black steel pipe with welded fittings. At Contractors option, piping larger than 4" may be Schedule 10. At Contractors option, roll grooved pipe with mechanical couplings may be used. Schedule 5 piping is <u>not</u> acceptable.

3.13 MECHANICAL GROOVED PIPING

- A. At the contractors option, roll grooved piping and fittings may be used for the Fire Protection and HVAC piping systems inside building in lieu of connections hereinbefore specified. Cut grooved piping is not acceptable.
- B. Couplings shall be fabricated in two or more parts of malleable iron castings, in accordance Federal Specification QQ-I-666c, Grade II. Couplings gasket shall be molded synthetic rubber, per ASTM-D-75-61, Grade No. R615BZ. Coupling bolts shall be oval neck track head type with hexagonal heavy nuts, per ASTM A-183-60.
- C. All pipe fittings shall be fabricated of malleable iron castings in accordance with Federal Specifications QQ-1-666c, Grade II. Where malleable fitting pattern is not available, fittings fabricated from Schedule 40 steep pipe or standard wall seamless welded fittings with grooved ends may be used.
- D. Before assembly of couplings, light coat pipe ends and outside of gaskets with cup grease or graphite paste to facilitate installation.
- E. Pipe grooving shall be in accordance with the manufacturer's specifications contained in latest published literature.

3.14 VICTAULIC COUPLINGS

- A. At the contractors option, Victaulic couplings and fittings may be used for the Fire Protection and HVAC piping systems inside building in lieu of connections hereinbefore specified.
- B. Couplings shall be manufactured in two or more parts of ASTM A-395 grade 65-45-15 and A-536 grade 65-45-12 ductile iron castings. Coupling gaskets shall be suited for the intended service as per manufacturer's guidelines and recommendations. Coupling bolts shall be zincplated carbon steel track head type with hexagonal heavy nuts, per ASTM A-183-60.

- C. Rigid Couplings shall be Victaulic Style 07, FireLock[™] Style 005, or equal with offsetting angle-pattern bolt pads, to provide rigidity and piping system support and hanging requirements in accordance with ANSI B31.1, B31.9, and NFPA 13.
- D. Flexible Couplings shall be Victaulic Style 75, or Victaulic Style 77, or equal: Flexible Couplings shall used in locations where stress relief and vibration attenuation are required. Couplings shall be placed in close proximity to the vibration source.
- E. Flange Adapters shall be Victaulic Style 741, or equal. Flange adapters shall be Class 150 flange adapters for grooved end pipe shall be manufactured in two or more parts of ASTM A-395 grade 65-45-15 and A-536 grade 65-45-12 ductile iron castings. Flange adapter gaskets shall be suited for the intended service as per manufacturer's guidelines and recommendations.
- F. All pipe fittings used with pipe couplings shall be fabricated of ductile iron conforming to ASTM A-395 grade 65-45-15 and A-536 grade 65-45-12 or forged carbon steel conforming to ASTM A234 grade WPB. Where Victaulic ductile iron or forged carbon steel fitting patterns are not available, fittings fabricated from schedule 40 steel pipe conforming to ASTM A-53 with grooved ends may be used. Fittings used in fire protection service shall be UL listed and FM approved, equal to Victaulic FireLock[™] fittings.
- G. Pipe ends shall be clean and free from indentations, projections, and roll marks. Before assembly of couplings, lightly coat pipe ends and outside of gaskets with lubricant, cup grease or graphite paste to facilitate installation.
- H. Pipe grooving shall be in accordance with the manufacturers specifications contained in latest published literature.
- I. All grooved couplings, fittings and flange adapters shall be the products of the same manufacturer. Grooving tools shall be of the same manufacturer as the grooved end components.

3.15 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers with wire guards.
 - 2. Rooms with Suspended Ceilings: Concealed sprinklers.
 - 3. Wall Mounting: Sidewall sprinklers.
 - 4. Spaces Subject to Freezing: Pendent, dry sprinklers.
 - 5. Special Applications: Extended-coverage, flow-control, and quick-response sprinklers where indicated.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 - 2. Upright and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 21 13 13

SECTION 22 00 00 – PLUMBING GENERAL PROVISIONS

PART 1 GENERAL

1.1 SUMMARY

A. The General Conditions of the Architectural Specifications, along with the supplementary conditions, special conditions, information to bidders, and any other pertinent information and documents shall apply the same as if repeated herein.

1.2 SCOPE OF WORK

- A. Furnish all labor and material necessary to provide and install the complete mechanical portion of this Contract, including plumbing systems as called for herein and on accompanying drawings. Parts of the mechanical division may be bid separately or in combination, at the Contractors option; however, it shall be the responsibility of the General Contractor to assure himself that all items covered in the this Division have been included if he chooses to accept separate bids.
- B. This Contractor shall refer to the Architectural and Structural drawings and install equipment, piping, etc. to meet building and space requirements. No equipment shall be bid on or submitted for approval if it will not fit in the space provided.
- C. It is the intention of these Specifications that all mechanical systems shall be furnished complete with all necessary valves, controls, insulation, piping, devices, equipment, etc. necessary to provide a satisfactory installation in working order.
- D. Contractor shall visit the site and acquaint himself thoroughly with all existing facilities and conditions which would affect his portion of the work. Failure to do so shall not relieve the Contractor from the responsibility of installing his work to meet the conditions.

This Contractor shall protect the entire system and all parts thereof from injury throughout the project and up to acceptance of the work. Failure to do so shall be sufficient cause for the Architect to reject any piece of equipment.

1.3 DEMOLITION

- A. The contractor shall visit the site prior to bid to determine the extent of work required to complete the project.
- B. Contractor shall coordinate demolition with owner. The Owner shall have "First Right of Refusal" regarding salvage of all equipment and materials to be removed. Locate equipment as directed by owner. All equipment and materials not salvaged by the owner shall be removed from the site and discarded at the contractor's expense.

- C. Contractor shall coordinate all work with general contractor and phase work as required by project.
- D. All equipment piping, etc. required to be removed to accommodate the modifications shall be removed.
- E. Contractor shall maintain services to existing facilities which shall remain during and after construction is complete.
- F. Contractor shall coordinate any shutdown of services with the owner. It is intended that the building will remain occupied during construction. Contractor shall schedule shut down of services with the owner in order to prevent disruption of building occupancy.
- G. Contractor shall be responsible for draining down of existing systems to complete demolition. All work shall be scheduled with the owner. Contractor shall also be responsible for refilling system and removing all air in order to return the systems to proper operating conditions.
- H. All shut down of services shall be done at night or during a time period approved by the owner. The systems shall be required to be back up and running each morning unless otherwise approved by the owner.

1.4 GROUNDS AND CHASES

A. This Contractor shall see that all required chases, grounds, holes and accessories necessary for the installation of his work are properly built in as the work progresses; otherwise, he shall bear the cost of providing them.

1.5 CUTTING AND PATCHING

A. Initial cutting and patching shall be the responsibility of the General Contractor, with the Mechanical Contractor being responsible for laying out and marking any and all holes required for the reception of his work. No structural beams or joists shall be cut or thimbled without first receiving the approval of the Architect. After initial surfacing has been done, any further cutting, patching and painting shall be done at this Contractor S expense.

1.6 FILL AND CHARGES FOR EQUIPMENT

A. Fill and charge with materials or chemicals all those devices or equipment as required to comply with the manufacturers guarantee or as required for proper operation of the equipment.

1.7 MACHINERY GUARDS

- A. This Contractor shall provide v-belt guards for each v-belt drive or other hazardous drive. The guard shall enclose the drive entirely and shall have a hole for taking a tachometer reading.
- B. Provide protective guard for belts, pulleys, gears, couplings, projecting set screws, keys and other rotating parts which are located such that a person might come in close proximity. Construct protective guard around angle iron frame, securely bolted to apparatus; comply with safety requirements. Install guard to completely enclose drives and pulleys and not interfere with lubrication of equipment. Provide 2 inch minimum diameter opening in fan belt guards housing for tachometer.

1.8 REPAIRING ROADWAYS AND WALKS

A. Where this Contractor cuts or breaks roadways or walks, in order to lay piping, he shall repair or replace these sections to meet the Architects approval.

1.9 EXCAVATION AND BACKFILL

- A. Contractor shall perform all excavating necessary to lay the specified services. Perform excavation of every description and of whatever substance encountered to depths indicated or specified. Pile materials suitable for backfilling a sufficient distance from banks of trenches to prevent slides or cave-ins. Comply with OSHA requirements for excavation, trenching and shoring. Waste excavation materials, rubbish, etc. shall be carted away from the premises, as indicated. Remove water from trenches by pumping or other approved method, discharge at a safe distance from the excavation.
- B. Provide trenches of necessary width for proper laying of pipe and comply with latest publication of OSHA 2226 Excavating and Trenching Operations. Coordinate trench excavation with pipe installation to avoid open trenches for prolonged periods. Accurately grade bottoms of trenches to provide uniform bearing and support for each section of pipe on undisturbed soil or the required thickness of bedding material at every point along its entire length.
- C. Provide minimum 12 inches between outer surfaces and embankment or shoring, which may be used, when excavating for manholes and similar structures. Remove unstable soil that is incapable of supporting the structure in the bottom of the excavation to the depth necessary to obtain design bearing.
- D. Material to be excavated is "unclassified". No adjustment in the contract price will be made on account of the presence or absence of rock, shale, masonry, or other materials.
- E. Protect existing utility lines that are indicated or the locations of which are made known prior to excavating and trenching and that are to be retained. Protect utility lines encountered during excavating and trenching operations, from damage during excavating, trenching and backfilling; if damaged, repair lines as directed by utilities, owner and A/E. Issue notices

when utility lines that are to be removed are encountered within the area of operations in ample time for the necessary measures to be taken to prevent interruption of the service.

- F. Provide trenches for utilities of a depth that will provide the following minimum depths of cover from existing grade or from indicated finished grades, or depths of cover in accordance with the manufacturer's recommendations, whichever is lower:
 - 1. 1-Foot Minimum Cover: Sanitary sewer, storm drainage, industrial waste, acid waste.
 - 2. 3-Feet Minimum Cover: Domestic water, fire line.
- G. Underground domestic water piping and fire line piping shall have a 6" bed of sand below the piping and backfilled with sand to 6" above the top of piping. Select fill may be used above the sand layer.
- H. Backfill trenches after piping, fittings and joints have been tested and approved. Backfill trenches with sand to provide 6 inches of sand below piping and 12 inches of sand cover above piping.
- I. Backfill remainder of trenches with satisfactory material consisting of earth, loam, sandy clay, sand and gravel or soft shale, free from large clods of earth and stones not over 1-1/2 inches in size. Deposit backfill material in 9 inch maximum layers, loose depth as indicated or as specified. Take care not to damage utility lines.
- J. Deposit the remainder of backfill materials in the trench in 1 foot maximum layers and compact by mechanical means. Refer to architectural for minimum density for compaction (Minimum 85 percent of maximum soil density as determined by ASTM D 698). Re-open trenches and excavation pits improperly backfilled or where settlement occurs to the depth required to obtain the specified compaction, the refill and compact with the surface restored to the required grade and compaction.
- K. Backfill utility line trench with backfill material, in 6 inch layers, where trenches cross streets, driveways, building slabs, or other pavement. Moisten each layer and compact to 95 percent of the maximum soil density as determined by ASTM D 698. Accomplish backfilling in such a manner as to permit the rolling and compaction of the filled trench with the adjoining material to provide the required bearing value so that paving of the area can proceed immediately after backfilling is complete.

1.10 NOISE AND VIBRATION

A. Provide the plumbing system and its associated components, items, piping, and equipment free of objectionable vibration or noise. Statically and dynamically balance rotating equipment and mount or fasten so that no vibration is transmitted to or through the building structure by equipment, piping, ducts or other parts of work, rectify such conditions at no additional compensation.

1.11 PAINTING

- A. All painting shall be by the General Contractor S Painting Sub-Contractor. All pipe, pipe covering, equipment, supports, hangers, etc. exposed in the building or equipment room shall be painted. This Contractor shall prepare the surface of the material to receive the first coat of paint.
- B. All subsequent coatings shall be prepared by the Painting Sub-Contractor. Requirements covering paints, workmanship and preparation of surfaces as stated in the Architectural Specifications shall govern. Colors shall be approved by the Architect. All piping shall be color-coded.

1.12 CLEANING AND ADJUSTING

A. Upon completion of his work, the Contractor shall clean and adjust all equipment, controls, valves, etc.; clean all piping, ductwork, etc.; and leave the entire installation in good working order.

1.13 OPERATING AND MAINTENANCE INSTRUCTIONS

- A. Provide the Owner with three (3) copies of printed instructions indicating various pieces of equipment by name and model number, complete with parts lists, maintenance and repair instructions and test and balance report.
- B. COPIES OF SHOP DRAWINGS WILL NOT BE ACCEPTABLE AS OPERATION AND MAINTENANCE INSTRUCTIONS BUT MUST BE INCLUDED IN SUBMITTAL PACKAGE.
- C. This information shall be bound in plastic hardbound notebooks with the job name permanently embossed on the cover. Rigid board dividers with labeled tabs shall be provided for different pieces of equipment. Submit manuals to the Architect for approval.
- D. In addition to the operation and maintenance brochure, the Contractor shall provide a separate brochure which shall include registered warranty certificates on all equipment, especially any pieces of equipment which carry warranties exceeding one (1) year.
- E. The operation and maintenance brochure shall be furnished with a detailed list of <u>all</u> equipment furnished to the project, including the serial number and all pertinent nameplate data such as voltage, amperage draw, recommended fuse size, rpm, etc. The Contractor shall include this data on <u>each</u> piece of equipment furnished under this contract.

1.14 GUARANTEE

A. The Contractor shall guarantee all materials, equipment and workmanship for a period of one (1) year from the date of final acceptance of the project. This guarantee shall include

furnishing of all labor and material necessary to make any repairs, adjustments or replacement of any equipment, parts, etc. necessary to restore the project to first class condition. This guarantee shall exclude only the changing or cleaning of filters. Warranties exceeding one (1) year are hereinafter specified with individual pieces of equipment.

1.15 LOCAL CONDITIONS

- A. The location and elevation of all utility services is based on available surveys and utility maps and are reasonably accurate; however, these shall serve as a general guide only, and the Contractor shall visit the site and verify the location and elevation of all services to his satisfaction in order to determine the amount of work required for the execution of the Contract.
- B. The Contractor shall contact the various utility companies, determine the extent of their requirements and he shall include in his bid all lawful fees and payments required by these companies for complete connection and services to the building, including meters, connection charges, street patching, extensions from meters to main, etc.
- C. In case major changes are required, this fact, together with the reasons therefor, shall be submitted to the Architect, in writing, not less than seven (7) days before the date of bidding. Failure to comply with this requirement will make the Contractor liable for any changes, additions and expenses necessary for the successful completion of the project.

1.16 PERMITS, INSPECTIONS AND TESTS

- A. All permits, fees, etc. for the installation, inspections, plan review, service connections locations, and/or construction of the work which are required by any authority and/or agencies having jurisdiction, shall be obtained and paid for by the Contractor. This shall be verified during the bidding process.
- B. The Contractor shall make all tests required by the Architect, Engineer or other governing authorities at no additional cost to the Owner.
- C. The Contractor shall notify the Architect and local governing authorities before any tests are made, and the tests are not to be drawn off a line covered or insulated until examined and approved by the authorities. In event defects are found, these shall be corrected and the work shall be retested.
- D. Prior to requesting final inspection by the Architect, the Contractor shall have a complete coordination and adjustment meeting of all of his sub-contractors directly responsible for the operation of any portion of the system. At the time of this meeting, each and every sequence of operation shall be checked to assure proper operation. Notify the Architect in writing ten (10) days prior to this meeting, instructing him of the time, date and whom you are requesting to be present.
E. This project shall not be accepted until the above provisions are met to the satisfaction of the Architect.

1.17 CODES AND STANDARDS

- A. The entire mechanical work shall comply with the rules and regulations of the City, Parish, County and the State in which this project is being constructed, including the State Fire Marshal and the State Department of Health. Modifications required by these authorities shall be made without additional charge to the Owners. The Contractor shall report these modifications to the Architect and secure his approval before work is started.
- B. In addition to the codes heretofore mentioned, mechanical work and equipment shall conform to the applicable portions of the following specifications, codes and/or regulations:
 - 1. American Society of Heating, Refrigeration and
 - 2. Air Conditioning Engineers (ASHRAE)
 - 3. National Electrical Code (NEC)
 - 4. National Fire Protection Association (NFPA)
 - 5. American Society of Mechanical Engineers (ASME)
 - 6. American Gas Association (AGA)
 - 7. International Building Code (IBC)
 - 8. International Mechanical Code (IMC)
 - 9. International Plumbing Code (IPC)
 - 10. International Fuel Gas Code (IFGC)
 - 11. Underwriters Laboratories (UL)
 - 12. Life Safety Code (NFPA 101)
 - 13. State Sanitary Code
 - 14. Louisiana State Uniform Construction Code Council (LSUCCC)
 - 15. Facility Guidelines Institute "Guidelines for Design and Construction of Hospitals and Outpatient Facilities" (2014 Edition)
 - C. Materials, equipment and accessories installed under this Contract shall conform to the rules, codes, etc. as recommended by National Associations governing the manufacturer, rating and testing of such materials, equipment and accessories. Materials shall be new and of the best quality and first class in every respect. Whenever directed by the Architect, the Contractor shall submit a sample for approval before proceeding.
 - D. Where laws or local regulations provide that certain accessories such as gauges, thermometers, relief valves and parts be installed on equipment, it shall be understood that such equipment be furnished complete with the necessary accessories, whether or not called for in these Specifications.
 - E. Unfired pressure vessels shall be built in accordance with the A.S.M.E. Code and so stamped. Furnish shop certificates for each vessel.

1.18 REVIEW OF MATERIALS

- A. Whenever manufacturers or trade names are mentioned in these Plans or Specifications, the words "or approved equivalent" shall be assumed to follow whether or not so stated. Manufacturers or trade names are used to establish a standard of quality only, and should not be construed to infer a preference. Equivalent products which meet the Architects approval will be accepted; however, these products must be submitted to the Architect a minimum of seven (7) days prior to the Bid Date.
- B. Submission shall include the manufacturers name, model number, rating table and construction features.
- C. Upon receipt and checking of this submittal, the Architect will issue an addendum listing items which are approved as equivalent to those specified. THE CONTRACTOR SHALL BASE HIS BID SOLELY ON THOSE ITEMS SPECIFIED OR INCLUDED IN THE "PRIOR APPROVAL ADDENDUM", AS NO OTHER ITEM WILL BE ACCEPTABLE.
- D. Prior approval of a particular piece of equipment does not mean automatic final acceptance and will not relieve the Contractor of the responsibility of assuring himself that this equipment is in complete accord with the Plans and Specifications and that it will fit into the space provided. Shop drawings must be submitted on all items of equipment for approval as hereinafter specified.
- E. Before proceeding with work and/or within thirty (30) days after the award of the General Contract for this work, the Mechanical Contractor shall furnish to the Architect complete shop and working drawings of such apparatus, equipment, controls, insulation, etc. to be provided in this project. These drawings shall give dimensions, weights, mounting data, performance curves and other pertinent information.
- F. The Architect s approval of shop drawings shall not relieve the Contractor from the responsibility of incorrectly figured dimensions or any other errors which may be contained in these drawings. Any omission from the shop drawings or specifications, even though approved by the Architect, shall not relieve the Contractor from furnishing and erecting same.
- G. Six (6) sets of shop drawings shall be submitted to the Architect for approval. These submittals shall be supplied as part of this Contractors contract. Any drawings not approved shall be resubmitted until they are approved.
- H. This information shall be bound in plastic hardbound notebooks with the job name permanently embossed on the cover. Rigid board dividers with labeled tabs shall be provided for different pieces of materials and equipment. Submit shop drawings to the Architect for approval. Faxed copies submissions will not be accepted.

1.19 MINOR DEVIATIONS

A. Plans and detail sketches are submitted to limit, explain and define conditions, specified requirements, pipe sizes and manner of erecting work. Structural or other conditions may

require certain modifications from the manner of installation shown, and such deviations are permissible and shall be made as required. However, specified sizes and requirements necessary for satisfactory operation shall remain unchanged. It may be necessary to shift ducts or pipes, or to change the shape of ducts, and these changes shall be made as required. All such changes shall be referred to the Architect and Engineer for approval before proceeding. Extra charges shall not be allowed for these changes. The contractor shall obtain a full set of plans and specifications for the coordination of his work prior to bidding this project. Items which are unclear to the bidding contractor shall be brought to the Architect and Engineers attention prior to bidding the project. An interpretation shall be clarified by the Architect and/or the Engineer prior to bidding.

- B. The Contractor shall realize that the drawings could delve into every step, sequence or operation necessary for the completion of the project, without drawing on the Contractors experience or ingenuity. However, only typical details are shown on the Plans. In cases where the Contractor is not certain about the method of installation of his work, he shall ask for details. Lack of details will not be an excuse for improper installation.
- C. In general, the drawings are diagrammatic and the Contractor shall install his work in a manner so that interferences between the various trades are avoided. In cases where interferences do occur, the Architect is to state which item was first installed.

1.20 AS-BUILT RECORD DRAWINGS

- A. The Contractor shall obtain at his cost, two sets of blue line prints of the original bid documents by the Architect. One set shall be kept on the site with all information as referenced below, and shall update same as the work progresses. The other set will be utilized to record all field changes to a permanent record copy for the Owner.
- B. If the Contractor elects to vary from the Contract Documents and secures prior approval from the Architect for any phase of the work, he shall record in a neat and readable manner, <u>ALL</u> such variances on the blackline print in red. The original blackline prints shall be returned to the Architect for documentation.
- C. All deviations from sizes, locations, and from all other features of the installations shown in the Contract Documents shall be recorded.
- D. In addition, it shall be possible using these drawings to correctly and easily locate, identify and establish sizes of all piping, directions and the like, as well as other features of the work which will be concealed underground and/or in the finished building.
- E. Locations of underground work shall be established by dimensions to columns, lines or walls, locating all turns, etc., and by properly referenced centerline or invert elevations and rates of fall.
- F. For work concealed in the building, sufficient information shall be given so it can be located with reasonable accuracy and ease. In some cases this may be by dimension. In others, it

may be sufficient to illustrate the work on the drawings in relation to the spaces in the building near which it was actually installed. The Architect S/Engineer S decision in this matter will be final.

- G. The following requirements apply to all "As-Built" drawings:
 - 1. They shall be maintained at the Contractor's expense.
 - 2. All such drawings shall be done carefully and neatly, and in a form approved by the Architect/Engineer.
 - 3. Additional drawings shall be provided as necessary for clarifications.
 - 4. These drawings shall be kept up-to-date during the entire course of the work and shall be available upon request for examination by the Architect/Engineer; and when necessary, to establish clearances for other parts of the work.
 - 5. "As-built" drawings shall be returned to the Architect upon completion of the work and are subject to approval of the Architect/Engineer.

1.21 REQUIRED SHOP DRAWING SUBMITTALS

- A. Provide the following shop drawing submittals:
 - 1. Pipe insulation.
 - 2. All Valves.
 - 3. Plumbing fixtures and trim.
 - 4. Pipe and pipe fittings.
 - 5. PVC jacket color samples.
 - 6. Water Heaters.

PART 2 PRODUCTS

2.1 PLUMBING PRODUCTS

A. Refer to individual Division 22 sections for plumbing products, pipe, tube and fitting materials and joining methods.

PART 3 EXECUTION

3.1 MANUFACTURER'S DIRECTION

A. The contractor shall install and operate equipment and material in accordance with the manufacturer's installation and operating instructions. The manufacturer's instructions of installation and operation shall become part of the Contract Documents and shall supplement the Drawings and Specifications.

B. Store equipment in a clean, dry place protected from other construction. While stored, maintain factory wrapping or tightly cover and protect equipment against dirt, water, construction debris, chemical, physical or weather damage, traffic and theft.

3.2 EQUIPMENT LABELS

A. Provide equipment labels for water heaters and mixing valves. Labels shall have permanent laminated construction secured to equipment.

3.3 PIPE LABELS

- A. Provide pipe markers and directional arrows on all piping in mechanical equipment rooms, or which is exposed in building, and on both sides of all valves located above ceiling. Markers shall be as manufactured by W.H. Bradley Co., Marking Services Inc. or the equivalent. All letters shall be color-coded and sized as recommended by OSHA. Samples of the type of letters to be used shall be submitted with shop drawings. Piping shall be color-coded.
- B. Pipe markers with arrows shall indicate lines content and shall be located 20 feet on center and at each change of direction of line. Identification bands shall be color coded to match pipe markers and shall be provided 10 feet on center. Pipe identification markers shall be taped at each end and shall be taped around the entire circumference of pipe.
- C. The following Piping shall be identified:
 - 1. Domestic Cold Water
 - 2. Domestic Hot Water
 - 3. Sanitary Sewer
 - 4. Sanitary Vent
 - 5. Condensate Drain

3.4 VALVE TAGS

A. Secure metal tags to all valves. Labeling on all valve tags shall include type of system the valve controls and the area of building, zone, or equipment number affected by valve operation. Tag shall be 2"minimum diameter brass, engraved with code number, service and size. A framed list of the valves, giving manufacturers name, model number, type and location shall be mounted in the main equipment room.

3.5 ACCESS DOORS:

- A. Provide access doors in walls, floors and ceilings to permit access to equipment and piping requiring service or adjustment.
 - 1. Valves.
 - 2. Plumbing drainage cleanouts.
 - 3. Other Plumbing equipment indicated in schedules or specifications which are requiring maintenance, adjustment or operation.
- B. Provide hinged access doors and frames as follows:
 - 1. Drywall Construction:
 - a. Provide with concealed spring hinges and flush screwdriver operated cam locks in sufficient number of the size of the panel.
 - b. Provide prime paintable surface (not galvanized).
 - c. Product: Milcor "Style M" (Karp DSC-214M).
 - 2. Visible Masonry and Ceramic Tile:
 - a. Milcor "Style M" (Karp DSC-214M).
 - 3. Cement Plaster:
 - a. Milcor "Style K" (KarpDSC-214 PL).
 - 4. Acoustical Plaster:
 - a. Reinforced panel as required to prevent sagging. Provide continuous steel piano type hinge for the length of the panel, and sufficient number for the size of the panel. Provide factory prime paint surface (not galvanized).
 - b. Product: Milcor "Style AP" (Karp 214 PL).
 - 5. Acoustical Tile:
 - a. Milcor "Style AT" (Larsen L-CPA).
- C. Provide continuous concealed hinges and cam locks.

- D. Provide UL listed 1-1/2 hour label "B" access doors with automatic self-closing latching mechanism where required.
- E. Provide removable ceiling access tile section immediately adjacent to each mechanical or electrical device located in the ceiling plenum above removable tile ceiling.
- F. Coordinate approval of type, color and location of access doors & frames with Architect.

3.6 CLEANING AND SERVICE

- A. Upon Completion of this work, the contractor shall clean and adjust equipment, controls, valves, etc.;
- B. Clean piping, fixtures, cleanout covers, floor drain covers, etc. and leave the entire installation in good working order.
- C. Adjust flush valves and faucets to allow for proper operation.

END OF SECTION 22 00 00

SECTION 22 05 23 – GENERAL DUTY VALVES FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes the furnishing and installation of general duty valves for plumbing:

1.3 DEFINITIONS

A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.
1. Certification that products comply with NSF 61 Annex G and NSF 372 (lead free).

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and soldered ends.
 - 3. Set ball valves open to minimize exposure of functional surfaces.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.5 for flanges on steel valves.
 - 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 5. ASME B16.18 for solder-joint connections.
 - 6. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 Annex G and NSF 372 for valve materials for potable-water service.
- D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 - 2. Hand lever: For quarter-turn valves smaller than NPS 4.
- H. Valves in Insulated Piping:
 - 1. Include 2-inch stem extensions.
 - 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 - 3. Memory stops that are fully adjustable after insulation is applied.

2.2 MANUFACTURERS

- A. Valves shall be manufactured by one of the following:
 - 1. Kitz.
 - 2. Red & White.
 - 3. Nibco.
 - 4. Kennedy.
 - 5. Crane.
 - 6. Milwaukee.
 - 7. Keystone.
 - 8. Stockham.
 - 9. Grinnell.
 - 10. Mueller.
 - 11. Jamesbury.
 - 12. DeZurik.
 - 13. Hammond.
 - 14. Apollo.

2.3 BRONZE BALL VALVES

- A. Two-Piece, Bronze Ball Valves with Full Port and Brass Trim:
 - 1. Kitz 59/69, Apollo 77C, NIBCO Design S-580-70, Milwaukee BA-150-S, Red & White 5049F or equal, threaded ends of heating hot water and low pressure steam of Kitz 58/68, Apollo 77CLF, NIBCO Design T-580-70, Milwaukee BA-100-S, Red & White 5044F or equal. For insulated piping systems, provide ball valves with extended stem, insulated handle with protective thermal barrier sleeve to prevent condensate moisture drip and pipe insulation deterioration.
 - 2. 3. Des
 - . Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. SSP Rating: 150 psi.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded and soldered.
 - g. Seats: PTFE.
 - h. Stem: Brass. Blow-out proof.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.
 - k. Vinyl covered steel handle.
 - l. Lead Free.
 - m. Conforms to ASTM B-62.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown. Unions are not required on flanged devices.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install valve tags.
- F. All valves, unions, etc. where pipe is chrome plated shall have similar finish. All exposed supplies to plumbing fixtures shall be chrome plated.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- B. All gas cocks, valves, etc. on gas lines shall have local utility company and AGA approval.
- C. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Solder ends, except provide threaded ends for heating hot water.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends or grooved ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Grooved end or Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Grooved end or Flanged ends.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 3 and Smaller (above grade):
 - 1. Two-piece, bronze ball valves with full port and brass trim.

END OF SECTION 22 05 23

SECTION 22 07 19 – PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Sanitary drain piping receiving condensate.
 - 4. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated and for each application. Include thermal conductivity, water-vapor permeance, thickness, and jackets (both factory- and field-applied, if any).

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- B. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

B. Reject damaged, deteriorated, wet, or contaminated material and immediately remove from the site. Replace removed materials at no additional cost to Owner.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields.
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Insulation:
 - 1. Pittsburgh-Corning.
 - 2. Owens- Corning.
 - 3. Certainteed.
 - 4. Armacell.
 - 5. Rubatex.
 - 6. Knauf.
 - 7. Johns Manville.

B. Jacketing:

- 1. Ceel-Co.
- 2. O'Brien.
- 3. Zeston.
- 4. Childers.
- 5. Pabco.
- C. Adhesives:
 - 1. Benjamin Foster.
 - 2. Childers.
 - 3. Vimasco.
 - 4. B.E.H.

2.2 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Density of 5.0 lbs/cubic foot.
 - 2. K factor of 0.27 at 75 degrees F mean.
 - 3. Maximum water vapor transmission of 0.17 per inch.
 - 4. Must be listed for 25/50 flame/smoke spread of thickness used.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- H. Mineral-Fiber, Preformed Pipe Insulation: Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. All-service jacket ASJ-SSL type factory applied jacketing.
 - 2. 6 lbs/cu ft minimum density.
 - 3. k-factor of 0.31 maximum at 200 degrees F mean.
 - 4. 850 degree F service temperature.
 - 5. 0.02 perm maximum Jacket permeance.

2.3 PIPE AND FITTING COVERS

- A. Polyvinyl Chloride (PVC) Covers:
 - 1. Ultraviolet resistant.
 - 2. 0.020 inch minimum thickness.
 - 3. Preformed to match outer diameter of insulation.
 - 4. Preformed fitting covers, minimum 10 mil.
- B. Aluminum (A) Covers:
 - 1. ASTM B209, Alloy 3003 minimum.

- 2. 0.016-inch thickness.
- 3. Bright anodized or acrylic-coated smooth finish on exposed side.
- 4. 2-piece tee and ribless elbow covers in minimum 0.016-inch, preformed.
- 5. Provide moisture barrier backing and butt-joint with mastic seal for joining of adjacent sections.

2.4 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when
 - calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 MASTICS

- A. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 2. Service Temperature Range: 0 to 180 deg F.
 - 3. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 4. Color: White.

2.6 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 3. Service Temperature Range: 0 to plus 180 deg F.
 - 4. Color: White.

2.7 SEALANTS

- A. Joint Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 4. Color: White or gray.
 - 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.
 - 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.8 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.10 SECUREMENTS

A. Bands:

- 1. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- C. Wire: 0.080-inch nickel-copper alloy.
- 2.11 PROTECTIVE SHIELDING GUARDS
 - 1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.
 - 2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.

- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturers recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturers written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:

- 1. Vibration-control devices.
- 2. Testing agency labels and stamps.
- 3. Nameplates and data plates.
- 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

4. Secure insulation to valves and specialties and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturers recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.

- 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
- 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer s recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturers recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturers recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.10 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor soption.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following: 1.
 - 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1.

- 1. Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
- B. Domestic Hot Water Mains:
 - 1. NPS 2 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - 2. NPS 2-1/2 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch thick.
- C. Domestic Hot Water Supply and Return runouts (up to NPS 2 and not exceeding 12 feet in length from fixture shutoff valve back toward main line):
 - NPS 2 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
- D. Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities (Handicapped Lavatory & Sinks P-Trap & Supply Lines):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Insulate p-trap, tailpiece and water supplies on handicapped lavatories with white, Truebro Model 102, Zurn 8947 handi lav-guard, or approved equivalent insulating system to meet A.D.A. Requirements. Provide accessories for offset tailpiece as required.
- E. Floor Drains, Traps, and aboveground Sanitary Drain Piping receiving HVAC condensate:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1/2 inch thick.
 - b. Mineral-Fiber, ³/₄ lb density, ductwrap insulation with aluminum foil vapor barrier, Type I: 2 inch thick.
- F. Exposed Domestic Cold and Hot Water Piping.
 - 1. All exposed domestic cold and hot water piping shall also have field install PVC jacket.
- G. Sewer Waste and Vent Piping:
 - 1. Where Contractor elects to use schedule 40 PVC waste and vent piping (in lieu of cast iron piping) (exposed, in walls, in furrings, or above ceilings) (vertical and horizontal lines) shall be insulated with 2" thick 3/4 # density fiberglass ductwrap insulation with aluminum foil vapor barrier. Insulation shall be sealed at all seams and joints. Insulation shall be installed with a foil backed adhesive tape around the diameter of the pipe with insulation at 24" on center intervals.

3.12 INDOOR, PIPING WITHIN CMU BLOCK WALLS PIPING INSULATION SCHEDULE

A. Domestic cold water, hot water and condensate drain lines shall be insulated with 1/2" thick flexible closed cell elastomeric thermal tube insulation as manufactured by Armaflex AP, Rubatex or prior approved equal. All joints are to be firmly butted together. All lap and butt joint strips are to be sealed in place with vapor barrier adhesive. Fittings are to be mitered

segments of insulation held in place with vapor barrier sealant. Engineered Polymer Foam Insulation (EPFI) will not be accepted.

END OF SECTION 22 07 19

SECTION 22 11 16 – DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
 - 2. Encasement for piping.

1.3 ACTION SUBMITTALS

A. Product Data: For piping, transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
- B. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- C. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Lead free Solder-joint.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.

2.4 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.5 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Standard: ASSE 1079.
 - 2. Pressure Rating: 150 psig.
 - 3. End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 220000 "Plumbing General Provisions" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDAs "Copper Tube Handbook."
- C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance.
- D. Install shutoff valve immediately upstream of each dielectric fitting.
- E. Install domestic water piping level and plumb.
- F. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

- H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- I. Install piping to permit valve servicing.
- J. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- K. Install piping free of sags and bends.
- L. Install fittings for changes in direction and branch connections.
- M. Install sleeves for piping penetrations of walls, ceilings, and floors.
- N. Install sleeve seals for piping penetrations of concrete walls and slabs.
- O. Install escutcheons for piping penetrations of walls, ceilings, and floors.
- P. Domestic cold water lines penetrating concrete slabs shall be wrapped with "Protect-O-Sleeve" vinyl flexible tube as manufactured by Robert H. Harris Co., Jones Stephen or equivalent.

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Brazed Joints for Copper Tubing: Comply with CDAs "Copper Tube Handbook," "Brazed Joints" chapter.
- D. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDAs "Copper Tube Handbook."

3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.

- 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition unions.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Provide pipe hangers and support products. Install as per the following:
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.
- F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturers written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 2. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 - 3. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

A. Identify system components.

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.

- d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 - f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of available chlorine. Isolate with valves and allow to stand for 24 hours (minimum time shall be 6 hours). A chlorine residual of at least 5 ppm should remain before the lines are put in use.
 - 3. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - a. Repeat procedures if biological examination shows contamination.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of watersample approvals from authorities having jurisdiction.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Underground piping up to 5'-0" from building, domestic cold water, building-service piping, NPS 4 and smaller, shall be the following:
 - 1. PVC, Schedule 40; socket fittings; and solvent-cemented joints.

- E. Aboveground domestic water piping, NPS 4 and smaller, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; copper, solder-joint fittings; and soldered joints.

3.12 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball valves for piping NPS 3 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 4 and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 22 11 16

SECTION 22 11 19 – DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Vacuum breakers.
 - 2. Water-hammer arresters.
 - 3. Escutcheons
 - 4. Trap-seal primer valves.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- 1.4 INFORMATIONAL SUBMITTALS
 - A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

- A. Potable-water piping and components shall comply with NSF 61 Annex G.
- 2.2 PERFORMANCE REQUIREMENTS
 - A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Standard: ASSE 1001.
 - 2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 3. Body: Bronze.
 - 4. Inlet and Outlet Connections: Threaded.
 - 5. Finish: Rough bronze.
- B. Hose-Connection Vacuum Breakers:
 - 1. Standard: ASSE 1011.
 - 2. Body: Bronze, non-removable, with manual drain.
 - 3. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
 - 4. Finish: Chrome or nickel plated.

2.4 WATER-HAMMER ARRESTERS

- A. Water-Hammer Arresters:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. <u>AMTROL, Inc</u>.
 - b. <u>Precision Plumbing Products</u>.
 - c. <u>Sioux Chief Manufacturing Company, Inc</u>.
 - 2. Standard: ASSE 1010 or PDI-WH 201.
 - 3. Type: Copper tube with piston.
 - 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.
 - 5. Plumbing fixtures with quick closing valves (i.e.: Dishwashers, Ice Maker, Tub/Shower Valve, Washing Machines, etc.) install "Shock Trol", "Precision Plumbing Products", Sioux Chief "Hydra-Rester", or equal water Hammer arrester properly sized for each unit.

2.5 ESCUTCHEONS

A. Provide escutcheons for all exposed lines passing through floors, walls, and ceilings. They shall be chrome plated brass and shall be of such flange size as to cover necessary penetrating openings.

2.6 TRAP-SEAL PRIMER DEVICE

- A. Supply-Type, Trap-Seal Primer Device:
 - 1. Standard: ASSE 1018.
 - 2. Pressure Rating: 125 psig minimum.
 - 3. Body: Bronze.
 - 4. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
- 5. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
- 6. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.
- B. Drainage-Type, Trap-Seal Primer Device:
 - 1. Standard: ASSE 1044, lavatory P-trap with NPS 3/8 minimum, trap makeup connection.
 - 2. Size: NPS 1-1/4 minimum.
 - 3. Material: Chrome-plated, cast brass.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install water-hammer arresters in water piping according to PDI-WH 201.
- B. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- C. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.

END OF SECTION 22 11 19

SECTION 22 13 16 – SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For solvent drainage system. Include plans, elevations, sections, and details.

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- 2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
 - A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy class(es).
 - B. Gaskets: ASTM C 564, rubber.
 - C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
- C. Cast-Iron, Hubless-Piping Couplings:
 - 1. Standard: ASTM C 1277.
 - 2. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. Cellular-Core PVC Pipe shall not be acceptable.
- C. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- D. Solvent Cement: ASTM D 2564.
 - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 EQUIPMENT DRAIN AND RELIEF LINES

- A. These shall be Government Type "L" hard copper.
- B. Provide air gap between the indirect waste and the building drainage system in accordance with International Plumbing Code (2015 Edition).

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 220000 "Plumbing General Provisions."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and

reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

- K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturers written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Drainage Piping: 1 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- M. Install cast-iron soil piping according to CISPIs "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- N. Install aboveground PVC piping according to ASTM D 2665.
- O. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- P. Install sleeves for piping penetrations of walls, ceilings, and floors.
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs.
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices as per the ASHRAE Guidelines 1.
 - 2. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

- E. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- F. Install supports for vertical PVC piping every 48 inches.
- G. Support piping and tubing not listed above according to MSS SP-69 and manufacturers written instructions.

3.4 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Install horizontal backwater valves with cleanout cover flush with floor in pit with pit cover flush with floor.
 - 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Connect force-main piping to the following:
 - 1. Sanitary Sewer: To exterior force main.
 - 2. Sewage Pump: To sewage pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.

- 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
- G. Identify exposed sanitary waste and vent piping.

3.5 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.6 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.
- 3.7 PIPING SCHEDULE
 - A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
 - B. Below grade & above grade, soil and waste piping NPS 6 and smaller shall be the following:
 1. Solid-wall Schedule 40, "DWV" PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - C. Below grade & above grade, vent piping NPS 4 and smaller shall be the following:
 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION 22 13 16

SECTION 22 13 19 – SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Through-penetration firestop assemblies.
 - 2. Miscellaneous sanitary drainage piping specialties.
 - 3. Flashing materials.

1.3 DEFINITIONS

A. PVC: Polyvinyl chloride plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 REFER TO DRAWINGS FOR PLUMBING FIXTURE SCHEDULE.

2.2 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
 - 2. Size: Same as connected soil, waste, or vent stack.
 - 3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.

- 4. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
- 5. Special Coating: Corrosion resistant on interior of fittings.

2.3 FLASHING MATERIALS

- A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 - 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.
 - 3. Burning: 6-lb/sq. ft., 0.0938-inch thickness.
- B. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, millphosphatized finish for painting if indicated.
- C. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- D. Fasteners: Metal compatible with material and substrate being fastened.
- E. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- F. Solder: ASTM B 32, lead-free alloy.
- G. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
- B. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- C. Install deep-seal traps on floor drains and other waste outlets, if indicated.

3.2 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 - 2. Copper Sheets: Solder joints of copper sheets.

- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."
- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
- G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.3 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 13 19

SECTION 22 33 00 – ELECTRIC DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electric, tankless, instantaneous domestic-water heaters.
 - 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type and size of domestic-water heater indicated.
- B. Shop Drawings:
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For electric, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
- C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components Health Effects."

1.6 COORDINATION

A. Coordinate sizes and locations of framed stands / bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 REFER TO DRAWINGS FOR WATER HEATER SCHEDULE.

PART 3 - EXECUTION

3.1 CONNECTIONS

A. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.2 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturers Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Prepare test and inspection reports.

END OF SECTION 22 33 00

SECTION 22 42 00 – PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sinks.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each of the plumbing fixtures.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flush valves to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 REFER TO DRAWINGS FOR PLUMBING FIXTURE SCHEDULE.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
- B. Examine walls and floors for suitable conditions where plumbing fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Refer to Architectural Drawings for mounting height and exact location of all plumbing fixtures. Handicapped fixtures shall be installed to meet the latest A.D.A. requirements.

3.3 QUALITY

- A. Plumbing Contractor shall furnish and install all plumbing fixtures shown on accompanying Drawings. Refer to both Plumbing and Architectural, and provide all fixtures shown on either. Fixtures shall be complete with all necessary brass and accessories required for a complete installation, including traps, escutcheons, angle supplies, basin cocks, etc. All fixtures shall be new and must be delivered to the building properly crated in perfect condition.
- B. All brass must be of the best quality. Lightweight goods will not be accepted.
- C. All brass pipe shall be seamless brass tubing and nipples shall be extra heavy.
- D. All fittings and trim shall be chromium plated heavy brass unless otherwise specified.
- E. "P" traps on lavatories and sinks shall be cast brass with cleanouts.
- F. All exposed piping shall be chromium plated.
- G. Provide cut-off valves at each fixture in both hot and cold water piping.
- H. For the purpose of establishing type and class of fixtures required, the following plate numbers have been taken from the Manufacturer's Catalog as indicated: Other fixture manufacturers and model numbers, with prior approval, will be acceptable, however fixtures and accessories shall meet standards and features indicated below.
- I. Contractor shall install silicon caulk around the base of a plumbing fixture or around the perimeter of a plumbing fixture where it attaches to a wall. The color of the caulk shall match the color of the plumbing fixture or shall be a color selected by the architect. Verify final color prior to installation. Caulked joint shall be properly smoothed out and shall completely seal the joint between the plumbing fixture and the surface the fixture is attached to. Unacceptable applications shall be completely removed and re-applied in accordance with directions from the architect.
- J. Wall Flange and Escutcheon Installation:
 - 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 - 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 - 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- K. Joint Sealing:
 - 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 - 2. Match sealant color to water-closet color.

3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.4 CONNECTIONS

- A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.5 CLEANING AND PROTECTION

- A. Clean plumbing fixtures and fittings with manufacturers recommended cleaning methods and materials.
- B. Install protective covering for installed plumbing fixtures and fittings.
- C. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 00

SECTION 22 62 13 – VACUUM PIPING FOR HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Medical-surgical vacuum piping, designated "medical vacuum."
- B. Related Requirements:
 1. Section 22 64 00 "Medical Gas Alarms" for vacuum piping alarms.

1.3 DEFINITIONS

- A. HVE: High-volume (oral) evacuation.
- B. Medical vacuum piping systems include medical vacuum, HVE, and medical laboratory vacuum piping systems.
- C. Nonmedical laboratory vacuum piping systems include laboratory low-vacuum and laboratory high-vacuum piping systems.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- 1.5 INFORMATIONAL SUBMITTALS
 - A. Qualification Data: For Installer and testing agency.
 - B. Material Certificates: Signed by Installer certifying that medical vacuum piping materials comply with requirements in NFPA 99.
 - C. Brazing certificates.
 - D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For vacuum piping specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Medical Vacuum Piping Systems for Healthcare Facilities: According to ASSE Standard #6010 for medical-gas-system installers.
 - 2. Pressure-Seal Joining Procedure for Copper Tubing: An authorized representative who is trained and approved by manufacturer.
 - 3. Extruded-Tee Outlet Procedure: An authorized representative who is trained and approved by manufacturer.
 - 4. Shape-Memory-Metal Coupling Joints: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel according to ASSE Standard #6020 for medical-gas-system inspectors and ASSE Standard #6030 for medical-gas-system verifiers.
- C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Medical vacuum operating at 15 in. Hg.

2.2 PIPES, TUBES, AND FITTINGS

- A. Comply with NFPA 99 for medical vacuum piping materials.
- B. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in blue.

- C. Copper Water Tube: ASTM B 88, Type M, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service.
- D. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.
- E. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150.
 - 1. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness, full-face type.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.
- F. Shape-Memory-Metal Couplings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Lok-Ring.
 - 2. Description: Cryogenic compression fitting made of nickel-titanium, shape-memory alloy, and that has been manufacturer cleaned, purged, and sealed for oxygen service according to CGA G-4.1.
- G. Extruded-Tee Outlets: ASTM F 2014 procedure for making branch outlets in copper tube.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. <u>T-DRILL Industries Inc</u>.
- H. Flexible Pipe Connectors:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Flex-Hose Co., Inc</u>.
 - b. <u>Flexicraft Industries</u>.
 - c. <u>Mercer Rubber Co</u>.
 - d. <u>Metraflex Company (The)</u>.
 - 2. Description: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - a. Working-Pressure Rating: 250 psig minimum.
 - b. End Connections: Plain-end copper tube.

2.3 JOINING MATERIALS

- A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.
- C. Threaded-Joint Tape: PTFE.

2.4 VALVES

- A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
 - 1. Exception: Factory cleaning and bagging are not required for valves for WAGD service.
- B. Zone-Valve Box Assemblies: Box with medical gas valves, tube extensions, and gages.
 - 1. Zone-Valve Boxes:
 - a. Steel Box with Stainless-Steel Cover:
 - 1) <u>Manufacturers:</u> Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a) <u>BeaconMedaes</u>.
 - b) <u>Amico Corporation</u>.
 - c) Patton s Medical.
 - b. Description: Formed steel box with cover, anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves. Medical air and medical vacuum tubing, valves, and gages may be incorporated in zone valve boxes for medical gases.
 - 1) Interior Finish: Factory-applied white enamel.
 - 2) Cover Plate: stainless-steel with frangible or removable windows.
 - 3) Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- C. Copper-Alloy Ball Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>BeaconMedaes</u>.
 - b. <u>Amico Corporation</u>.
 - c. Patton S Medical.

- 2. Standard: MSS SP-110.
- 3. Description: Three-piece body, brass or bronze.
- 4. Pressure Rating: 300 psig minimum.
- 5. Ball: Full-port, chrome-plated brass.
- 6. Seats: PTFE or TFE.
- 7. Handle: Lever type with locking device.
- 8. Stem: Blowout proof with PTFE or TFE seal.
- 9. Ends: manufacturer-installed ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.
- D. Check Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>BeaconMedaes</u>.
 - b. <u>Amico Corporation</u>.
 - c. Patton s Medical.
 - 2. Description: In-line pattern, bronze.
 - 3. Pressure Rating: 300 psig minimum.
 - 4. Operation: Spring loaded.
 - 5. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.

2.5 MEDICAL VACUUM SERVICE CONNECTIONS

A. Contractor shall make final connection to equipment. Coordinate all requirements with equipment supplier.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 - 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 - 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 - a. Scrub to ensure complete cleaning.

b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of vacuum piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, vacuum producer sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Comply with NFPA 99 for installation of vacuum piping.
- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
- F. Install piping adjacent to equipment and specialties to allow service and maintenance.
- G. Install vacuum piping with 1 percent slope downward in direction of flow.
- H. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than piping pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.
- I. Install eccentric reducers, if available, where vacuum piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
- J. Provide drain leg and drain trap at end of each main and branch and at low points.
- K. Install piping to permit valve servicing.
- L. Install piping free of sags and bends.
- M. Install fittings for changes in direction and for branch connections. Extruded-tee branch outlets in copper tubing may be made where specified.
- N. Install medical vacuum piping from medical vacuum service connections specified in this Section, to equipment specified in other Sections requiring medical vacuum service.
- O. Install medical vacuum service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.

- P. Install medical vacuum bottle bracket adjacent to each wall-mounted medical vacuum service connection suction inlet.
- Q. Connect vacuum piping to vacuum producers and to equipment requiring vacuum service.
- R. Install unions in copper vacuum tubing adjacent to each valve and at final connection to each machine, specialty, and piece of equipment.
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for "Escutcheons for Plumbing Piping."

3.3 VALVE INSTALLATION

- A. Install shutoff valve at each connection to and from vacuum equipment and specialties.
- B. Install check valves to maintain correct direction of vacuum flow to vacuum-producing equipment.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
- D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.
- E. Install flexible pipe connectors in suction inlet piping to each vacuum producer.

3.4 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Apply appropriate tape to external pipe threads.
- E. Brazed Joints: Join copper tube and fittings according to CDAs "Copper Tube Handbook," "Brazed Joints" chapter. Do not use flux. Continuously purge joint with oil-free dry nitrogen during brazing.
- F. Extruded-Tee Outlets: Form branches in copper tube according to ASTM F 2014, with tools recommended by tube manufacturer.
- G. Flanged Joints:

- 1. Copper Tubing: Install flange on copper tubes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
- H. Pressure-Sealed Joints: Join copper tube and copper and copper-alloy fittings with tools recommended by fitting manufacturer.
- I. Shape-Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of shape-memory-metal coupling joints.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- B. Vertical Piping: MSS Type 8 or Type 42, clamps.
- C. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.
- D. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- E. Base of Vertical Piping: MSS Type 52, spring hangers.
- F. Support horizontal piping within 12 inches of each fitting and coupling.
- G. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch-minimum rods.
- H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4: 60 inches with 3/8-inch rod.
 - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 - 3. NPS 3/4: 84 inches with 3/8-inch rod.
 - 4. NPS 1: 96 inches with 3/8-inch rod.
 - 5. NPS 1-1/4: 108 inches with 3/8-inch rod.
 - 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 - 7. NPS 2: 11 feet with 3/8-inch rod.
 - 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 - 9. NPS 3: 14 feet with 1/2-inch rod.
 - 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
 - 11. NPS 4: 16 feet with 1/2-inch rod.
 - 12. NPS 5: 18 feet with 1/2-inch rod.
 - 13. NPS 6: 20 feet with 5/8-inch rod.

I. Install supports for vertical copper tubing every 10 feet.

3.6 IDENTIFICATION

- A. Install identifying labels and devices for laboratory vacuum piping, valves, and specialties. Comply with requirements for "Identification for Plumbing Piping and Equipment."
- B. Install identifying labels and devices for medical vacuum piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Medical Vacuum: Black letters on white background.

3.7 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL VACUUM PIPING

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections of medical vacuum piping systems in healthcare facilities and to prepare test and inspection reports.
- B. Tests and Inspections:
 - 1. Medical Vacuum Testing Coordination: Perform tests, inspections, verifications, and certification of medical vacuum piping systems concurrently with tests, inspections, and certification of medical compressed-air piping and medical gas piping systems.
 - 2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 - a. Initial blowdown.
 - b. Initial pressure test.
 - c. Cross-connection test.
 - d. Piping purge test.
 - e. Standing pressure test for vacuum systems.
 - f. Repair leaks and retest until no leaks exist.
 - 3. System Verification: Perform the following tests and inspections according to NFPA 99, ASSE Standard #6020, and ASSE Standard #6030:
 - a. Standing pressure test.
 - b. Individual-pressurization or pressure-differential cross-connection test.
 - c. Valve test.
 - d. Master and area alarm tests.
 - e. Piping purge test.
 - f. Final tie-in test.
 - g. Operational vacuum test.
 - h. Verify correct labeling of equipment and components.

- 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - a. Inspections performed.
 - b. Procedures, materials, and gases used.
 - c. Test methods used.
 - d. Results of tests.
- C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.8 **PROTECTION**

- A. Protect tubing from damage.
- B. Retain sealing plugs in tubing, fittings, and specialties until installation.
- C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.

3.9 PIPING SCHEDULE

- A. Connect new copper tubing to existing copper tubing with memory-metal couplings.
- B. Flanges may be used where connection to flanged equipment is required.
- C. Medical Vacuum Piping: Use copper medical gas tube, wrought-copper fittings, and brazed joints.

3.10 VALVE SCHEDULE

- A. Shutoff Valves:
 - 1. Copper Tubing: Copper-alloy ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.
 - 2. PVC Piping:
 - a. NPS 4 and Smaller: Copper-alloy ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.
- B. Zone Valves: Copper-alloy ball valve with manufacturer-installed ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.

END OF SECTION 22 62 13

SECTION 22 63 13 – GAS PIPING FOR HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Oxygen piping, designated "medical oxygen."
 - 2. Medical-compressed air piping, designated "medical air."
- B. Related Requirements:
 - 1. Section 22 64 00 "Medical Gas Alarms" for combined vacuum, and gas alarms.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. Medical gas piping systems include medical oxygen for healthcare facility patient care.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and testing agency.
- B. Material Certificates: Signed by Installer certifying that medical gas piping materials comply with requirements in NFPA 99 for positive-pressure medical gas systems.
- C. Brazing certificates.
- D. Certificates of Shop Inspection and Data Report for Bulk Gas Storage Tanks: As required by ASME Boiler and Pressure Vessel Code.
- E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For medical and specialty gas piping specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Medical Gas Piping Systems for Healthcare Facilities: According to ASSE Standard #6010 for medical-gas-system installers.
 - 2. Bulk Medical Gas Systems for Healthcare Facilities: According to ASSE Standard #6015 for bulk-medical-gas-system installers.
 - 3. Shape-Memory-Metal Coupling Joints: An authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the medical gas piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel according to ASSE Standard #6030 for medical-gas-system verifiers.
- C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Medical oxygen operating at 50 to 55 psig.

2.2 PIPES, TUBES, AND FITTINGS

- A. Comply with NFPA 99 for medical gas piping materials.
- B. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service; or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY" tube and blue for Type L tube.
- C. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.
- D. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.

- E. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150.
 - 1. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness, full-face type.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.

2.3 JOINING MATERIALS

- A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.
- B. Threaded-Joint Tape: PTFE.

2.4 VALVES

- A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.
- B. Zone-Valve Box Assemblies: Box with medical gas valves, tube extensions, and gages.
 - 1. Zone-Valve Boxes:
 - a. Steel Box with Stainless-Steel Cover:
 - 1) <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a) <u>BeaconMedaes</u>.
 - b) Aimco Corporation.
 - c) Patton s Medical.
 - b. Description: Formed steel box with cover, anchors for recessed mounting, holes with grommets in box sides for tubing extension protection, and of size for single or multiple valves with pressure gages and in sizes required to permit manual operation of valves. Medical air and medical vacuum tubing, valves, and gages may be incorporated in zone valve boxes for medical gases.
 - 1) Interior Finish: Factory-applied white enamel.
 - 2) Cover Plate: stainless steel with frangible or removable windows.
 - 3) Valve-Box Windows: Clear or tinted transparent plastic with labeling that includes rooms served, according to NFPA 99.
- C. Ball Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Amico Corporation</u>.
 - b. <u>BeaconMedaes</u>.

- c. Patton s Medical.
- 2. Standard: MSS SP-110.
- 3. Description: Three-piece body, brass or bronze.
- 4. Pressure Rating: 300 psig minimum.
- 5. Ball: Full-port, chrome-plated brass.
- 6. Seats: PTFE or TFE.
- 7. Handle: Lever type with locking device.
- 8. Stem: Blowout proof with PTFE or TFE seal.
- 9. Ends: manufacturer-installed ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.
- D. Check Valves:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Amico Corporation</u>.
 - b. <u>BeaconMedaes</u>.
 - c. Patton s Medical.
 - 2. Description: In-line pattern, bronze.
 - 3. Pressure Rating: 300 psig minimum.
 - 4. Operation: Spring loaded.
 - 5. Ends: Manufacturer-installed ASTM B 819, copper-tube extensions.
- E. Safety Valves:
 - 1. Bronze body.
 - 2. ASME-construction, poppet, pressure-relief type.
 - 3. Settings to match system requirements.
- F. Pressure Regulators:
 - 1. Stainless-steel body and trim.
 - 2. Spring-loaded, diaphragm-operated, relieving type.
 - 3. Manual pressure-setting adjustment.
 - 4. Rated for 250-psig minimum inlet pressure.
 - 5. Capable of controlling delivered gas pressure within 0.5 psig for each 10-psig inlet pressure.

2.5 MEDICAL GAS SERVICE CONNECTIONS

A. Contractor shall make final connection to equipment. Coordinate all requirements with equipment supplier.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 - 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 - 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 - a. Scrub to ensure complete cleaning.
 - b. Rinse with clean, hot water to remove cleaning solution.

3.2 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling and for underground warning tapes.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of gas piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Comply with NFPA 99 for installation of medical gas piping.
- C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
- F. Install piping adjacent to equipment and specialties to allow service and maintenance.

- G. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.
- H. Install piping to permit valve servicing.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and for branch connections.
- K. Install medical gas piping to medical gas service connections specified in this Section, to medical gas service connections in equipment specified in this Section, and to equipment specified in other Sections requiring medical gas service.
- L. Install exterior, buried medical gas piping in protective conduit fabricated with PVC pipe and fittings. Do not extend conduit through foundation wall.
- M. Install medical gas service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.
- N. Connect gas piping to gas sources and to gas outlets and equipment requiring gas service.
- O. Install unions in copper tubing adjacent to each valve and at final connection to each specialty and piece of equipment.
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for "Sleeves and Sleeve Seals for Plumbing Piping."
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for "Sleeves and Sleeve Seals for Plumbing Piping."
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for "Escutcheons for Plumbing Piping."

3.4 VALVE INSTALLATION

- A. Install shutoff valve at each connection to gas laboratory and healthcare equipment and specialties.
- B. Install check valves to maintain correct direction of gas flow from laboratory and healthcare gas supplies.
- C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.
- D. Install zone valves and gages in valve boxes. Arrange valves so largest valve is lowest. Rotate valves to angle that prevents closure of cover when valve is in closed position.

- E. Install pressure regulators on gas piping where reduced pressure is required.
- F. Install emergency oxygen connection with pressure relief valve and full-size discharge piping to outside, with check valve downstream from pressure relief valve, and with ball valve and check valve in supply main from bulk oxygen storage tank.

3.5 JOINT CONSTRUCTION

- A. Ream ends of PVC pipes and remove burrs.
- B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
- C. Threaded Joints: Apply appropriate tape to external pipe threads.
- D. Brazed Joints: Join copper tube and fittings according to CDA^S "Copper Tube Handbook," "Brazed Joints" chapter. Continuously purge joint with oil-free, dry nitrogen during brazing.
- E. Shape-Memory-Metal Coupling Joints: Join new copper tube to existing tube according to procedures developed by fitting manufacturer for installation of shape-memory-metal coupling joints.
- F. Solvent-Cemented Joints: Clean and dry joining surfaces. Join PVC pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. Apply primer and join according to ASME B31.9 and ASTM D 2672 for solvent-cemented joints.

3.6 GAS SERVICE COMPONENT INSTALLATION

A. Assemble patient-service console with service connections. Install with supplies concealed in walls. Attach console box or mounting bracket to substrate.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- B. Vertical Piping: MSS Type 8 or Type 42, clamps.
- C. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 - 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.

- D. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.
- E. Base of Vertical Piping: MSS Type 52, spring hangers.
- F. Support horizontal piping within 12 inches of each fitting and coupling.
- G. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch-minimum rods.
- H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4: 60 inches with 3/8-inch rod.
 - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 - 3. NPS 3/4: 84 inches with 3/8-inch rod.
 - 4. NPS 1: 96 inches with 3/8-inch rod.
 - 5. NPS 1-1/4: 108 inches with 3/8-inch rod.
 - 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 - 7. NPS 2: 11 feet with 3/8-inch rod.
 - 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 - 9. NPS 3: 14 feet with 1/2-inch rod.
 - 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
 - 11. NPS 4: 16 feet with 1/2-inch rod.
 - 12. NPS 5: 18 feet with 1/2-inch rod.
 - 13. NPS 6: 20 feet with 5/8-inch rod.
- I. Install supports for vertical copper tubing every 10 feet.

3.8 IDENTIFICATION

- A. Install identifying labels and devices for specialty gas piping, valves, and specialties. Comply with requirements "Identification for Plumbing Piping and Equipment."
- B. Install identifying labels and devices for healthcare medical gas piping systems according to NFPA 99. Use the following or similar captions and color-coding for piping products where required by NFPA 99:
 - 1. Oxygen: White letters on green background or green letters on white background.
 - 2. Medical Air: Black letters on yellow background or yellow letters on black background.

3.9 FIELD QUALITY CONTROL FOR HEALTHCARE FACILITY MEDICAL GAS

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:

- 1. Medical Gas Piping Testing Coordination: Perform tests, inspections, verifications, and certification of medical gas piping systems concurrently with tests, inspections, and certification of medical compressed-air piping systems.
- 2. Preparation: Perform the following Installer tests according to requirements in NFPA 99 and ASSE Standard #6010:
 - a. Initial blowdown.
 - b. Initial pressure test.
 - c. Cross-connection test.
 - d. Piping purge test.
 - e. Standing pressure test for positive-pressure medical gas piping.
 - f. Standing pressure test for vacuum systems.
 - g. Repair leaks and retest until no leaks exist.
- 3. System Verification: Perform the following tests and inspections according to NFPA 99 and ASSE Standard #6030:
 - a. Standing pressure test.
 - b. Individual-pressurization or pressure-differential cross-connection test.
 - c. Valve test.
 - d. Master and area alarm tests.
 - e. Piping purge test.
 - f. Piping particulate test.
 - g. Piping purity test.
 - h. Final tie-in test.
 - i. Operational pressure test.
 - j. Medical gas concentration test.
 - k. Medical air purity test.
 - 1. Verify correct labeling of equipment and components.
 - m. Verify medical gas supply sources.
- 4. Testing Certification: Certify that specified tests, inspections, and procedures have been performed and certify report results. Include the following:
 - a. Inspections performed.
 - b. Procedures, materials, and gases used.
 - c. Test methods used.
 - d. Results of tests.
- C. Remove and replace components that do not pass tests and inspections and retest as specified above.
- D. Prepare test and inspection reports.

3.10 PROTECTION

A. Protect tubing from damage.

- B. Retain sealing plugs in tubing, fittings, and specialties until installation.
- C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.
- 3.11 DEMONSTRATION
 - A. Engage factory-authorized service representative to train Owners maintenance personnel to adjust, operate, and maintain bulk gas storage tanks.
- 3.12 PIPING SCHEDULE
 - A. Connect new tubing to existing tubing with memory-metal couplings.
 - B. Medical Gas Piping: Type L, copper tube; wrought-copper fittings; and brazed joints.
- 3.13 VALVE SCHEDULE
 - A. Shutoff Valves: Ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.
 - B. Zone Valves: Ball valve with manufacturer-installed ASTM B 819, copper-tube extensions with pressure gage on one copper-tube extension.

END OF SECTION 22 63 13
SECTION 22 64 00 – MEDICAL GAS ALARMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Area alarm panel.

1.3 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and testing agency.
- B. Product Test Reports: For each alarm panel, for tests performed by a qualified testing agency.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For alarm panels to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Qualify Installers for air, vacuum, and gas piping systems for healthcare facilities according to ASSE Standard #6010 for medical-gas-system installers.
- B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the air, vacuum, and gas piping testing indicated, that is a member of the Medical Gas Professional Healthcare Organization or is an NRTL, and that is acceptable to authorities having jurisdiction.
 - 1. Qualify testing personnel for air, vacuum, and gas piping systems for healthcare facilities according to ASSE Standard #6020 for medical-gas-system inspectors and ASSE Standard #6030 for medical-gas-system verifiers.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Gas and Vacuum Systems Monitored:
 - 1. Medical-compressed air, designated "medical air."
 - 2. Medical-surgical vacuum, designated "medical vacuum."
 - 3. Oxygen, designated "medical oxygen."

2.2 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Amico Corporation</u>.
 - 2. <u>BeaconMedaes</u>
 - 3. Pattons Medical.
- B. Source Limitations: Obtain medical alarm systems and components from single manufacturer.

2.3 GENERAL REQUIREMENTS FOR ALARM PANELS

- A. Description: Factory wired with audible and color-coded visible signals to indicate specified functions.
 - 1. Mounting: Recessed installation.
 - 2. Enclosures: Fabricated from minimum 0.047-inch-thick steel or minimum 0.05-inch-thick aluminum, with knockouts for electrical and piping connections.
- B. Components: Designed for continuous service and to operate on power supplied from 120-V ac power source to alarm panels and with connections for low-voltage wiring to remote sensing devices. Include step-down transformers if required.

- C. Dew Point Monitors: Continuous line monitoring, having panel with gage or digital display, pipeline sensing element, electrical connections for alarm system, factory- or field-installed valved bypass, and visual and cancelable audio signal for dryer site and master alarm panels. Alarm signals when pressure dew point rises above 39 deg F at 55 psig.
 - 1. Operation: Chilled-mirror method or hygrometer moisture analyzer with sensor probe.
- D. Pressure Switches or Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.
 - 1. Low-Pressure Operating Range: 0 to 100 psig.
 - 2. High-Pressure Operating Range: Up to 250 psig.
- E. Carbon-Monoxide Monitors: Panel with gage or digital display, pipeline sensing element, electrical connections for alarm system, and factory- or field-installed valved bypass. Alarm signals when carbon-monoxide level rises above 10 ppm.
- F. Vacuum Switches or Pressure Transducer Sensors: Continuous line monitoring with electrical connections for alarm system.
 - 1. Vacuum Operating Range: 0 to 30 in. Hg.

2.4 AREA ALARM PANELS

- A. Area Alarm Panels: Separate trouble alarm signals and indicators for each system.
 - 1. Standards: Comply with NFPA 99 and UL 544.
 - 2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Include alarm signals when the following condition exists:
 - a. Medical Air: Pressure drops below 40 psig or rises above 60 psig.
 - b. Medical Vacuum: Vacuum drops below 12 in. Hg.
 - c. Medical Oxygen: Pressure drops below 40 psig or rises above 60 psig.

PART 3 - EXECUTION

3.1 ALARM-PANEL INSTALLATION

- A. Install alarm panels in locations required by and according to NFPA 99.
- B. Install computer-interface cabinet with connection to alarm panels and facility computer.

3.2 CONNECTIONS

- A. Comply with requirements for piping specified in Section 226213 "Vacuum Piping for Healthcare Facilities," and Section 226313 "Gas Piping for Healthcare Facilities." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to alarm panels, allow space for service and maintenance.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification according to NFPA 99.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturers Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform each visual and mechanical inspection.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning panels and equipment.
- D. Alarm panels will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturers written instructions.

3.6 ADJUSTING

A. Adjust initial alarm panel pressure and vacuum set points.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owners maintenance personnel to adjust, operate, and maintain alarm panels.

END OF SECTION 22 64 00

SECTION 23 00 00 – MECHANICAL GENERAL PROVISIONS

PART 1 GENERAL

1.01 SUMMARY

A. The General Conditions of the Architectural Specifications, along with the supplementary conditions, special conditions, information to bidders, and any other pertinent information and documents shall apply the same as if repeated herein.

1.02 SCOPE OF WORK

- A. Furnish all labor and material necessary to provide and install the complete mechanical portion of this Contract, including HVAC systems as called for herein and on accompanying drawings. Parts of the mechanical division may be bid separately or in combination, at the Contractors option; however, it shall be the responsibility of the General Contractor to assure himself that all items covered in the this Division have been included if he chooses to accept separate bids.
- B. This Contractor shall refer to the Architectural and Structural drawings and install equipment, piping, etc. to meet building and space requirements. No equipment shall be bid on or submitted for approval if it will not fit in the space provided.
- C. It is the intention of these Specifications that all mechanical systems shall be furnished complete with all necessary valves, controls, insulation, piping, devices, equipment, etc. necessary to provide a satisfactory installation in working order.
- D. Contractor shall visit the site and acquaint himself thoroughly with all existing facilities and conditions that would affect his portion of the work. Failure to do so shall not relieve the Contractor from the responsibility of installing his work to meet the conditions.
- E. This Contractor shall protect the entire system and all parts thereof from injury throughout the project and up to acceptance of the work. Failure to do so shall be sufficient cause for the Architect to reject any piece of equipment.

1.03 DEMOLITION

- A. The contractor shall visit the site prior to bid to determine the extent of work required to complete the project.
- B. Contractor shall coordinate demolition with owner. The Owner shall have "First Right of Refusal" regarding salvage of all equipment and materials to be removed. Locate equipment as directed by owner. All equipment and materials not salvaged by the owner shall be removed from the site and discarded at the contractor's expense.

- C. Contractor shall coordinate all work with general contractor and phase work as required by project.
- D. All equipment piping, etc. required to be removed to accommodate the modifications shall be removed.
- E. Contractor shall maintain services to existing facilities which shall remain during and after construction is complete.
- F. Contractor shall coordinate any shutdown of services with the owner. It is intended that the building will remain occupied during construction. Contractor shall schedule shut down of services with the owner in order to prevent disruption of building occupancy.
- G. Contractor shall be responsible for draining down of existing systems to complete demolition. All work shall be scheduled with the owner. Contractor shall also be responsible for refilling system and removing all air in order to return the systems to proper operating conditions.
- H. All shut down of services shall be done at night or during a time period approved by the owner. The systems shall be required to be back up and running each morning unless otherwise approved by the owner.

1.04 GROUNDS AND CHASES

A. This Contractor shall see that all required chases, grounds, holes and accessories necessary for the installation of his work are properly built in as the work progresses; otherwise, he shall bear the cost of providing them.

1.05 CUTTING AND PATCHING

A. Initial cutting and patching shall be the responsibility of the General Contractor, with the Mechanical Contractor being responsible for laying out and marking any and all holes required for the reception of his work. No structural beams or joists shall be cut or thimbled without first receiving the approval of the Architect. After initial surfacing has been done, any further cutting, patching and painting shall be done at this Contractor S expense.

1.06 FILL AND CHARGES FOR EQUIPMENT

A. Fill and charge with materials or chemicals all those devices or equipment as required to comply with the manufacturers guarantee or as required for proper operation of the equipment.

1.07 MACHINERY GUARDS

A. This Contractor shall provide v-belt guards for each v-belt drive or other hazardous drive. The guard shall enclose the drive entirely and shall have a hole for taking a tachometer reading. B. Provide protective guard for belts, pulleys, gears, couplings, projecting set screws, keys and other rotating parts which are located such that a person might come in close proximity. Construct protective guard around angle iron frame, securely bolted to apparatus; comply with safety requirements. Install guard to completely enclose drives and pulleys and not interfere with lubrication of equipment. Provide 2 inch minimum diameter opening in fan belt guards housing for tachometer.

1.08 REPAIRING ROADWAYS AND WALKS

A. Where this Contractor cuts or breaks roadways or walks, in order to lay piping, he shall repair or replace these sections to meet the Architects approval.

1.09 EXCAVATION AND BACKFILL

- A. Contractor shall perform all excavating necessary to lay the specified services. Perform excavation of every description and of whatever substance encountered to depths indicated or specified. Pile materials suitable for backfilling a sufficient distance from banks of trenches to prevent slides or cave-ins. Comply with OSHA requirements for excavation, trenching and shoring. Waste excavation materials, rubbish, etc. shall be carted away from the premises, as indicated. Remove water from trenches by pumping or other approved method, discharge at a safe distance from the excavation.
- B. Provide trenches of necessary width for proper laying of pipe and comply with latest publication of OSHA 2226 Excavating and Trenching Operations. Coordinate trench excavation with pipe installation to avoid open trenches for prolonged periods. Accurately grade bottoms of trenches to provide uniform bearing and support for each section of pipe on undisturbed soil or the required thickness of bedding material at every point along its entire length.
- C. Provide minimum 12 inches between outer surfaces and embankment or shoring, which may be used, when excavating for manholes and similar structures. Remove unstable soil that is incapable of supporting the structure in the bottom of the excavation to the depth necessary to obtain design bearing.
- D. Material to be excavated is "unclassified". No adjustment in the contract price will be made on account of the presence or absence of rock, shale, masonry, or other materials.
- E. Protect existing utility lines that are indicated or the locations of which are made known prior to excavating and trenching and that are to be retained. Protect utility lines encountered during excavating and trenching operations, from damage during excavating, trenching and backfilling; if damaged, repair lines as directed by utilities, owner and A/E. Issue notices when utility lines that are to be removed are encountered within the area of operations in ample time for the necessary measures to be taken to prevent interruption of the service.
- F. Provide trenches for utilities of a depth that will provide the following minimum depths of cover from existing grade or from indicated finished grades, or depths of cover in accordance with the manufacturer's recommendations, whichever is lower:

- 1. 3-Feet Minimum Cover: Chilled Water lines, Heating Hot Water Lines, Condenser Water Lines.
- G. Underground piping shall have a 6" bed of sand below the piping and backfilled with sand to 6" above the top of piping. Select fill may be used above the sand layer.
- H. Backfill trenches after piping, fittings and joints have been tested and approved. Backfill trenches with sand to provide 6 inches of sand below piping and 12 inches of sand cover above piping.
- I. Backfill remainder of trenches with satisfactory material consisting of earth, loam, sandy clay, sand and gravel or soft shale, free from large clods of earth and stones not over 1-1/2 inches in size. Deposit backfill material in 9 inch maximum layers, loose depth as indicated or as specified. Take care not to damage utility lines.
- J. Deposit the remainder of backfill materials in the trench in 1 foot maximum layers and compact by mechanical means. Refer to architectural for minimum density for compaction (Minimum 85 percent of maximum soil density as determined by ASTM D 698). Re-open trenches and excavation pits improperly backfilled or where settlement occurs to the depth required to obtain the specified compaction, the refill and compact with the surface restored to the required grade and compaction.
- K. Backfill utility line trench with backfill material, in 6 inch layers, where trenches cross streets, driveways, building slabs, or other pavement. Moisten each layer and compact to 95 percent of the maximum soil density as determined by ASTM D 698. Accomplish backfilling in such a manner as to permit the rolling and compaction of the filled trench with the adjoining material to provide the required bearing value so that paving of the area can proceed immediately after backfilling is complete.

1.10 WELDING

A. Weld piping and above grade steel tanks in accordance with qualified procedures using performance qualified welders and welding operators. Qualified procedures and welders in accordance with ASME Section IX. Welding procedures qualified by others and welders and welding operators qualified by another employer may be accepted as permitted by ANSI B31.1. Notify the A/E 24 hours in advance of tests, and perform the tests at the work site if practicable. Furnish A/E with a copy of qualified procedures and a list of names and identification symbols of qualified welders and welding operators. Apply welders or welding operators assigned symbols near each weld they make as permanent record.

1.11 NOISE AND VIBRATION

A. Provide the plumbing system and its associated components, items, piping, and equipment free of objectionable vibration or noise. Statically and dynamically balance rotating equipment and mount or fasten so that no vibration is transmitted to or through the building structure by equipment, piping, ducts or other parts of work, rectify such conditions at no additional compensation.

1.13 CLEANING AND ADJUSTING

A. Upon completion of his work, the Contractor shall clean and adjust all equipment, controls, valves, etc.; clean all piping, ductwork, etc.; and leave the entire installation in good working order.

1.14 OPERATING AND MAINTENANCE INSTRUCTIONS

- A. Provide the Owner with three (3) copies of printed instructions indicating various pieces of equipment by name and model number, complete with parts lists, maintenance and repair instructions and test and balance report.
- B. COPIES OF SHOP DRAWINGS WILL NOT BE ACCEPTABLE AS OPERATION AND MAINTENANCE INSTRUCTIONS BUT MUST BE INCLUDED IN SUBMITTAL PACKAGE.
- C. This information shall be bound in plastic hardbound notebooks with the job name permanently embossed on the cover. Rigid board dividers with labeled tabs shall be provided for different pieces of equipment. Submit manuals to the Architect for approval.
- D. In addition to the operation and maintenance brochure, the Contractor shall provide a separate brochure which shall include registered warranty certificates on all equipment, especially any pieces of equipment which carry warranties exceeding one (1) year.
- E. The operation and maintenance brochure shall be furnished with a detailed list of <u>all</u> equipment furnished to the project, including the serial number and all pertinent nameplate data such as voltage, amperage draw, recommended fuse size, rpm, etc. The Contractor shall include this data on <u>each</u> piece of equipment furnished under this contract.

1.15 GUARANTEE

A. The Contractor shall guarantee all materials, equipment and workmanship for a period of one (1) year from the date of final acceptance of the project. This guarantee shall include furnishing of all labor and material necessary to make any repairs, adjustments or replacement of any equipment, parts, etc. necessary to restore the project to first class condition. This guarantee shall exclude only the changing or cleaning of filters. Warranties exceeding one (1) year are hereinafter specified with individual pieces of equipment.

1.16 LOCAL CONDITIONS

A. The location and elevation of all utility services is based on available surveys and utility maps and are reasonably accurate; however, these shall serve as a general guide only, and the Contractor shall visit the site and verify the location and elevation of all services to his satisfaction in order to determine the amount of work required for the execution of the Contract.

- B. The Contractor shall contact the various utility companies, determine the extent of their requirements and he shall include in his bid all lawful fees and payments required by these companies for complete connection and services to the building, including meters, connection charges, street patching, extensions from meters to main, etc.
- C. In case major changes are required, this fact, together with the reasons therefor, shall be submitted to the Architect, in writing, not less than seven (7) days before the date of bidding. Failure to comply with this requirement will make the Contractor liable for any changes, additions and expenses necessary for the successful completion of the project.

1.17 PERMITS, INSPECTIONS AND TESTS

- A. All permits, fees, etc. for the installation, inspections, plan review, service connections locations, and/or construction of the work which are required by any authority and/or agencies having jurisdiction, shall be obtained and paid for by the Contractor. This shall be verified during the bidding process.
- B. The Contractor shall make all tests required by the Architect, Engineer or other governing authorities at no additional cost to the Owner.
- C. The Contractor shall notify the Architect and local governing authorities before any tests are made, and the tests are not to be drawn off a line covered or insulated until examined and approved by the authorities. In event defects are found, these shall be corrected and the work shall be retested.
- D. Prior to requesting final inspection by the Architect, the Contractor shall have a complete coordination and adjustment meeting of all of his sub-contractors directly responsible for the operation of any portion of the system. At the time of this meeting, each and every sequence of operation shall be checked to assure proper operation. Notify the Architect in writing ten (10) days prior to this meeting, instructing him of the time, date and whom you are requesting to be present.
- E. This project shall not be accepted until the above provisions are met to the satisfaction of the Architect.

1.18 CODES AND STANDARDS

- A. The entire mechanical work shall comply with the rules and regulations of the City, Parish, County and State in which this project is being constructed, including the State Fire Marshal and the State Board of Health. All modifications required by these authorities shall be made without additional charge to the Owners. The Mechanical Contractor shall report these changes to the Architect and secure his approval before work is started.
- B. In addition to the codes heretofore mentioned, all mechanical work and equipment shall conform to the applicable portions of the following specifications, codes and/or regulations:
 - 1. American Society of Heating, Refrigeration and

- 2. Air Conditioning Engineers (ASHRAE)
- 3. National Electrical Code (NEC)
- 4. National Fire Protection Association (NFPA)
- 5. American Society of Mechanical Engineers (ASME)
- 6. American Gas Association (AGA)
- 7. International Building Code (IBC)
- 8. International Mechanical Code (IMC)
- 9. International Plumbing Code (IPC)
- 10. International Fuel Gas Code (IFGC)
- 11. Underwriters Laboratories (UL)
- 12. Life Safety Code (NFPA 101)
- 13. State Sanitary Code
- 14. Louisiana State Uniform Construction Code Council (LSUCCC)
- 15. Facility Guidelines Institute "Guidelines for Design and Construction of Hospitals and Outpatient Facilities" (2014 Edition)
- C. All materials, equipment and accessories installed under this Contract shall conform to all rules, codes, etc. as recommended by National Associations governing the manufacturer, rating and testing of such materials, equipment and accessories. All materials shall be new and of the best quality and first class in every respect. Whenever directed by the Architect, the Contractor shall submit a sample for approval before proceeding.
- D. Where laws or local regulations provide that certain accessories such as gauges, thermometers, relief valves and parts be installed on equipment, it shall be understood that such equipment be furnished complete with the necessary accessories, whether or not called for in these Specifications.
- E. All unfired pressure vessels shall be built in accordance with the A.S.M.E. Code and so stamped. Furnish shop certificates for each vessel.

1.19 REVIEW OF MATERIALS

- A. Whenever manufacturers or trade names are mentioned in these Plans or Specifications, the words "or approved equivalent" shall be assumed to follow whether or not so stated. Manufacturers or trade names are used to establish a standard of quality only, and should not be construed to infer a preference. Equivalent products which meet the Architects approval will be accepted; however, these products must be submitted to the Architect a minimum of seven (7) days prior to the Bid Date.
- B. Submission shall include the manufacturers name, model number, rating table and construction features.
- C. Upon receipt and checking of this submittal, the Architect will issue an addendum listing items which are approved as equivalent to those specified. THE CONTRACTOR SHALL BASE HIS BID SOLELY ON THOSE ITEMS SPECIFIED OR INCLUDED IN THE "PRIOR APPROVAL ADDENDUM", AS NO OTHER ITEM WILL BE ACCEPTABLE.

- D. Prior approval of a particular piece of equipment does not mean automatic final acceptance and will not relieve the Contractor of the responsibility of assuring himself that this equipment is in complete accord with the Plans and Specifications and that it will fit into the space provided. Shop drawings must be submitted on all items of equipment for approval as hereinafter specified.
- E. Before proceeding with work and/or within thirty (30) days after the award of the General Contract for this work, the Mechanical Contractor shall furnish to the Architect complete shop and working drawings of such apparatus, equipment, controls, insulation, etc. to be provided in this project. These drawings shall give dimensions, weights, mounting data, performance curves and other pertinent information.
- F. The Architect s approval of shop drawings shall not relieve the Contractor from the responsibility of incorrectly figured dimensions or any other errors which may be contained in these drawings. Any omission from the shop drawings or specifications, even though approved by the Architect, shall not relieve the Contractor from furnishing and erecting same.
- G. If contractor submits hard copies, Six (6) sets of shop drawings shall be submitted to the Architect for approval. These submittals shall be supplied as part of this Contractors contract.
- H. This information shall be bound in plastic hardbound notebooks with the job name on the cover. Rigid board dividers with labeled tabs shall be provided for different pieces of materials and equipment. Submit shop drawings to the Architect for approval. Faxed copies shall not be acceptable. We prefer electronic submissions sent via E-Mail.
- I. Required shop drawing submittals shall include but are not limited to the following:
 - 1. VRF Air Conditioning Equipment.
 - 2. Grilles, registers, diffusers and louvers.
 - 3. Ductwork and duct sealer.
 - 4. Duct insulation and accessories.
 - 5. Controls/Building Automation System.
 - 6. Exhaust fans.
 - 7. Manual Dampers, Motorized Dampers and Control Dampers.
 - 8. Actuators.
 - 9. Test and Balancing Agency (including forms).

1.20 COORDINATION DRAWINGS

- A. Submit three (3) black line prints of all mechanical room layouts showing locations of all equipment, piping, etc. to insure all will fit in space provided. Submit drawings at 1/4" scale. Layouts shall include equipment submitted on project to scale on plans.
- B. Submit coordination drawings with the respective equipment shop drawings.

1.21 MINOR DEVIATIONS

- A. Plans and detail sketches are submitted to limit, explain and define conditions, specified requirements, pipe sizes and manner of erecting work. Structural or other conditions may require certain modifications from the manner of installation shown, and such deviations are permissible and shall be made as required. However, specified sizes and requirements necessary for satisfactory operation shall remain unchanged. It may be necessary to shift ducts or pipes, or to change the shape of ducts, and these changes shall be made as required. All such changes shall be referred to the Architect and Engineer for approval before proceeding. Extra charges shall not be allowed for these changes. The contractor shall obtain a full set of plans and specifications for the coordination of his work prior to bidding this project. Items which are unclear to the bidding contractor shall be brought to the Architect and Engineers attention prior to bidding the project. An interpretation shall be clarified by the Architect and/or the Engineer prior to bidding.
- B. The Contractor shall realize that the drawings could delve into every step, sequence or operation necessary for the completion of the project, without drawing on the Contractors experience or ingenuity. However, only typical details are shown on the Plans. In cases where the Contractor is not certain about the method of installation of his work, he shall ask for details. Lack of details will not be an excuse for improper installation.
- C. In general, the drawings are diagrammatic and the Contractor shall install his work in a manner so that interferences between the various trades are avoided. In cases where interferences do occur, the Architect is to state which item was first installed.

1.22 AS-BUILT RECORD DRAWINGS

- A. The Contractor shall obtain at his cost, two sets of blackline prints of the original bid documents by the Architect. One set shall be kept on the site with all information as referenced below, and shall update same as the work progresses. The other set will be utilized to record all field changes to a permanent record copy for the Owner.
- B. If the Contractor elects to vary from the Contract Documents and secures prior approval from the Architect for any phase of the work, he shall record in a neat and readable manner, <u>ALL</u> such variances on the blackline print in red. The original blackline prints shall be returned to the Architect for documentation.
- C. All deviations from sizes, locations, and from all other features of the installations shown in the Contract Documents shall be recorded.
- D. In addition, it shall be possible using these drawings to correctly and easily locate, identify and establish sizes of all piping, directions and the like, as well as other features of the work which will be concealed underground and/or in the finished building.

- E. Locations of underground work shall be established by dimensions to columns, lines or walls, locating all turns, etc., and by properly referenced centerline or invert elevations and rates of fall.
- F. For work concealed in the building, sufficient information shall be given so it can be located with reasonable accuracy and ease. In some cases this may be by dimension. In others, it may be sufficient to illustrate the work on the drawings in relation to the spaces in the building near which it was actually installed. The Architects/Engineers decision in this matter will be final.
- G. The following requirements apply to all "As-Built" drawings:
 - 1. They shall be maintained at the Contractor's expense.
 - 2. All such drawings shall be done carefully and neatly, and in a form approved by the Archtect/Engineer.
 - 3. Additional drawings shall be provided as necessary for clarifications.
 - 4. These drawings shall be kept up-to-date during the entire course of the work and shall be available upon request for examination by the Architect/Engineer; and when necessary, to establish clearances for other parts of the work.
 - 5. "As-built" drawings shall be returned to the Architect upon completion of the work and are subject to approval of the Architect/Engineer.

PART 2 PRODUCTS

2.01 HVAC SYSTEM PRODUCTS

A. Refer to individual Division 23 sections for mechanical products, controls, fans, pipe, tube and fitting materials and joining methods.

PART 3 EXECUTION

3.01 MANUFACTURER'S DIRECTION

A. The contractor shall install and operate all equipment and material in accordance with the manufacturer's installation and operating instructions. The manufacturer's instructions of installation and operation shall become part of the Contract Documents and shall supplement the Drawings and Specifications.

3.02 EQUIPMENT LABELS

- A. Provide equipment labels for HVAC Equipment. Labels shall have permanent laminated construction secured to equipment.
- B. Provide laminated plate for each V.A.V. box or constant volume box. Attach plate to ceiling grid to indicate location above ceiling. Coordinate color selection with owner.
- C. Provide laminated plate for each VRF unit. For Ducted units above ceiling and refrigerant controllers (BC/BS)- Attach plate to ceiling grid to indicate location above ceiling. Plate shall

be white with black letters. For ceiling recessed units – Attached plate within the filter compartment. Tag shall not interfer with the filter installation. Coordinate color selection with owner.

3.03 CLEANING AND SERVICE

- A. Upon Completion of this work, the contractor shall clean and adjust equipment, controls, valves, etc.;
- B. Inspect, clean and service air filters and strainers immediately prior to final acceptance of project.
- C. Provide complete and working charge of proper refrigerant, free of contaminants, into each refrigerant system. After each system has been in operation long enough to ensure completely balanced condition, check the charge and modify it for proper operation as required.
- D. Place mechanical systems in complete working order. Clean equipment and piping materials thoroughly returning to "as new" condition prior to request for substantial completion.
- E. Remove excess materials and debris from mechanical rooms and drain pans. Broom clean areas. Thoroughly clean ductwork inside and outside before air devices (diffusers, grilles, etc.) are installed.

3.04 TEMPORARY HEATING AND AIR CONDITIONING DURING CONSTRUCTION PHASE

- Permanent building air conditioning equipment or systems are not designed to control building temperature and humidity levels during construction of the building. The building's HVAC system is not designed nor is it well suited for the proper drying of building/construction materials, and should not be used for such purposes.
- B. At all times, during construction phases, provide temporary ventilation both for comfort and protection of workers, for proper drying of wet work, and for proper curing of installed materials. Follow material manufacturer's published instructions with regard to installation of building materials.
- C. Provide temporary heat both for the comfort and protection of workers and as necessary to ensure suitable working conditions for construction operations of construction trades, and also as necessary for storage of products and materials. Refer to material manufacturer's literature for environmental operational temperature and humidity requirements.
- D. Provide temporary heat by use of self-contained, vented portable heating units, employing tanked gas or other approved heat source.
- E. Use only heating apparatus and fuels labeled or listed by a "National Recognized Testing Laboratory" recognized by OSHA. Keep equipment and surroundings in clean, safe conditions.
- F. Use flame resistant tarpaulins other material for temporary enclosures of space.

- G. Provide temporary humidity control by the use of small incremental de-humidifiers, packaged desiccant type de-humidifiers, and/or packaged DX type air conditioners.
- H. Do not permit space temperatures to reach or fall to a level which will cause damage to work. Coordinate the temperature and humidity requirements with the manufacturer of the finishes being provided.
- I. Replace interior or exterior surfaces damaged by the use of temporary heaters with new materials or refinish at no additional expense to the owner.
- J. As soon as practical after permanent heating, ventilation, and air conditioning systems are in place and operable, the contractor at his option, may provide heat from the permanent building heating system, until such time that the building is complete. It is recommended that the building's permanent heating and air conditioning systems not be utilized to maintain temperature and humidity conditions within the building during the construction phase. Small space heaters and portable de-humidifiers are suggested as sources of temperature and humidity control. It is the intent that the permanent HVAC systems should not be used to condition or control humidity during construction.
- K. The use of permanent HVAC systems will require that the systems be complete and fully controllable by the Building Automation System (BAS) including the ability to remotely alarm proper maintenance personnel in the event of any and all system failure(s) or inability to maintain setpoint temperatures and humidity levels. Should the contractor elect to utilize the building's permanent HVAC system, the contractor shall bring the HVAC systems and ductwork back to an original unused condition or state by thoroughly cleaning and/or repairing both equipment and ductwork including repair and refinishing scrapes, tears, scratches and dents, cleaning ductwork, cleaning AHU coils, etc.
- L. All dust, dirt, fungal growth, and debris in duct work shall be cleaned.
- M. All disposable or wearable parts such as belts, filters, etc., shall be replaced without option or cause.
- N. Contractor's Use of Permanent HVAC Systems:
 - 1. Heating System:
 - a. Should the contractor (at his option and at his own risk), utilize the building's permanent heating systems provided under this contract to provide space heating prior to project completion date subject to the restraints stated herein.
 - b. The fuel for such space heating and for required tests of heating equipment shall be provided by contractor.
 - c. The start up of equipment for use by the contractor shall not commence any warranty period.

- d. The heating system shall be operated only by qualified personnel, and shall be operated with all auxiliaries, safeties, and in accordance with manufacturer's instructions and good operating practice.
- e. If at any time the Owner's Representative determines that the equipment is being improperly operated or maintained, contractor will be directed to disconnect its use.
- f. Heating systems shall be operated and controlled to prevent temperature in any room or space in any building from exceeding 90 deg. F.
- g. Temperature controls shall be functional to the extent that the operating temperatures of equipment, ductwork piping, etc., shall not either fall or be elevated above or below normal operating limits. The contractor shall demonstrate to the owner or his representative the ability of the system to be controlled, including limit alarms installed and the ability to monitor the systems off-site.
- h. Systems shall not be operated unattended such as on holidays, weekends, nights, etc, nor shall personnel unfamiliar with the operation of the HVAC Systems be employed to "monitor or attend to" the systems such as security personnel, or janitorial staff. The heating system, when in operation, shall be continuously monitored by the mechanical contractor's approved personnel.
- i. Systems when activated, may be placed into operation without diffusers and registers in place, but filters capable of filtering gypsum dust or other associated construction dust and debris shall be provided both in air handling equipment and at return air grille locations. Filter all return air entering duct work, to prevent return air ductwork from accumulating dust or otherwise becoming dirty.
- j. Prior to final acceptance of the work, the contractor shall place heating systems and related equipment in a condition equal to new in that contractor shall clean all ductwork, coils, equipment, etc.
- k. All disposable or wearable parts such as belts, filters, etc., shall be replaced without option or cause.
- 2. Preliminary Heating Test, Adjusting and Balancing Report:
 - a. Provide a TAB report at the time the heating system(s) start-up which shall indicate the following conditions:
 - 1) Air pressure drop across the unit filters
 - 2) Air pressure drop across the unit's cooling coil(s)
 - 3) Air pressure drop across the unit's heating coil(s)
 - 4) Total static pressure produced by the unit

- 5) Discharge air static pressure
- 6) Fan RPM
- 7) Suction air pressure
- 8) Provide a unit pressure graph
- 9) Discharge air temperature (each air moving device)
- 10) Return air temperature (each air moving device)
- 11) Entering water temperatures (hot & chilled)
- 12) Leaving water temperatures (hot & chilled)
- 13) Water flow quantity (gpm) through the coil(s)(hot & chilled)
- 3. Air Conditioning System:
 - a. Should the contractor (at his option and at his own risk), utilize the building's permanent air conditioning systems provided under this contract to provide space cooling and de-humidification prior to the project completion date. As such, any damages, loss of performance, wear, and other detrimental effects caused by the operational performance characteristics of the A/C system such as condensation, sweating of grilles, registers, diffusers, ducts, equipment, walls, floors, ceilings, and other conditions which may cause damage to building components or which cause mold, mildew, etc., shall be the total responsibility of the contractor.
 - b. The fuel, electricity or other energy required for space cooling and for any subsequent operation or testing shall be provided by the Contractor.
 - c. The cooling system(s) shall be operated only by fulling qualified personnel and shall be operated with all safety auxiliaries, and in accordance with manufacturer's instructions and good operating practice.
 - d. Start-up of equipment for use by the Contractor shall not commence any warranty period.
 - e. If at any time the Owner's Representative determines that the equipment is being improperly operated or maintained, the contractor will be directed to discontinue and disconnect its use and the contractor will be required to provide portable units to maintain space temperatures.
 - f. Temporary cooling and/or de-humidification systems shall be operated and controlled to prevent temperature and humidity in any room or space in any portion of the building from falling below 75 deg. F or above 65% relative humidity.
 - g. Temperature controls shall be functional to the extent that the operating temperatures of equipment, ductwork, piping, etc., shall not fall below the normal stated "design" operating limits. The contractor shall demonstrate to the owner or his representative the ability of the system to

be controlled, including limit alarms installed and the ability to monitor the systems off-site.

- h. Insulation systems for all piping, ductwork, etc., shall be completely installed prior to use of the permanent systems.
- i. Systems shall not be operated unattended such as on holidays, weekends, nights, etc., nor shall personnel unfamiliar with the operation of the HVAC Systems be employed to "monitor or attend to" the systems such as security personnel, or janitorial staff. The air conditioning system when in operation, shall be continuously monitored by the mechanical contractor's approved personnel.
- j. Systems when activated, may be placed into operation without diffusers and registers in place, but filters capable of filtering gypsum dust or other associated construction dust and debris shall be provided both in air handling equipment and at return air grille locations. Filter all return air entering duct work, to prevent return air duct work from accumulating dust or otherwise becoming dirty.
- k. Contractor shall, prior to final acceptance of the work, place cooling systems and related equipment in a condition equal to new in that contractor shall clean all ductwork, coils, equipment, etc.
- 1. All disposable or wearable parts such as belts, filters, etc., shall be replaced without option or cause.
- 4. Preliminary Air Conditioning Test, Adjusting and Balancing Report:
 - a. Provide a TAB report at the time the heating system(s) start-up which shall indicate the following conditions:
 - 1) Air pressure drop across the unit filters
 - 2) Air pressure drop across the unit's cooling coil(s)
 - 3) Air pressure drop across the unit's heating coil(s)
 - 4) Total static pressure produced by the unit
 - 5) Discharge air static pressure
 - 6) Fan RPM
 - 7) Suction air pressure
 - 8) Provide a unit pressure graph
 - 9) Discharge air temperature (each air moving device)
 - 10) Return air temperature (each air moving device)
 - 11) Entering water temperatures (hot & chilled)
 - 12) Leaving water temperatures (hot & chilled)
 - 13) Water flow quantity (gpm) through the coil(s)(hot & chilled)

END OF SECTION 23 00 00

SECTION 23 05 13 – COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturers factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. All materials and equipment shall be installed in accordance with Manufacturer's recommended installation methods for obtaining conformance with the Contract Documents.
- B. Alignment of all motors, factory coupled or mounted, and all motors field coupled and mounted, shall be rechecked after all connections have been made and after 48 hours of operation in designed service.
- C. Verify the voltage characteristics of each motor prior to ordering.
- D. Verify the correct wire connections and rotation of equipment by "bumping" motor after wiring.
- E. Confirm voltage imbalance on 3-phase motors is less than 2%.
- 3.2 APPLICATION: Except as specifically indicated, motors shall be selected as follows:
 - A. Phase:
 - 1. Less than 1.0 HP: Single-Phase.
 - 2. 1 HP and Larger: Three-phase.
 - B. Single Phase Starting:
 - 1. 1/8 HP and Less: Split phase or permanent split capacitor.

- 2. Greater than 1/8 HP: Capacitor start.
- C. Enclosure:
 - 1. Totally enclosed fan-cooled (TEFC) for all motors located outside above roof, in wet areas, in mechanical rooms, or elsewhere as indicated.
 - 2. Open drip-proof (ODP) for motors located elsewhere, in a clean, dry environment.

END OF SECTION 23 05 13

SECTION 23 05 29 – HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1.

3.

- 2. Manufacturers:
 - a. Cooper B-Line, Inc.; a division of Cooper Industries.
 - b. Flex-Strut Inc.
 - c. Thomas & Betts Corporation, A Member of the ABB Group.
 - d. Unistrut; an Atkore International company.
 - e. Wesanco, Inc.
 - Standard: MFMA-4.
- 4. Channels: Continuous slotted steel channel with inturned lips.
- 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

- 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- 7. Metallic Coating: Electroplated zinc.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened Portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

- A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.
- B. Roof Sleepers for VRF outdoor condensing units: Pate Model ES-2 or equal, equipment rail supports, 18 ga. Galvanized steel, unitized construction with integral base plate, continuous welded corner seams, pressure treated wood nailer, counterflashing with screws. Height of support shall be a minimum of 16 inches. Coordinate layout of supports with the equipment manufacturer's representative and equipment point loading requirements. Coordinate flashing and exterior insulation with the roofing installer and Architect.

2.6 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturers operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturers written instructions.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.

- b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
- c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.

4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- E. Use thermal-hanger shield inserts for insulated piping and tubing.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.

- 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- L. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

END OF SECTION 23 05 29

SECTION 23 05 53 – IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Equipment Labels.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Manufacturer shall be one of the following:
 - a. Brady Corporation.
 - b. Brimar Industries, Inc.
 - c. Carlton Industries, LP.
 - d. Champion America.
 - e. Craftmark Pipe Markers.
 - f. Emedco.
 - g. Kolbi Pipe Marker Co.
 - h. LEM Products Inc.
 - i. Marking Services, Inc.
 - j. Seton Identification Products.
 - 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - 3. Letter Color: White.

- 4. Background Color: Black.
- 5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 8. Fasteners: Stainless-steel rivets.
- 9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment is Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules).
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulated.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

END OF SECTION 23 05 53

SECTION 23 05 93 – TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SCOPE OF WORK

- A. The Contractor shall obtain the services of an independent Test and Balance (TAB) Company which specializes in the testing and balancing of heating, ventilating and air conditioning (HVAC) systems to test, adjust and balance all HVAC systems in the building(s).
- B. The work included in this section consists of furnishing labor, instruments, and tools required in testing, adjusting and balancing the HVAC systems as described in these specifications or shown on accompanying drawings. Services shall include checking equipment performance, taking the specified measurements, and recording and reporting the results. The testing, adjusting and balancing agency shall act as a reporting agency; that is, list and report each piece of equipment as to identification number, manufacturer, model number, serial number, proper location, specified performance, and report actual performance of all equipment as found during testing. The report is intended to be used during the life of the building as a ready reference indicating original conditions, equipment components, etc.
- C. Representatives of the Test and Balance Company shall visit the job site during installation of the HVAC equipment, piping and ductwork as required.
- D. Upon completion of the HVAC system installation, the Test and Balance Company shall perform all required testing and balancing with the full cooperation of the Contractor and his Sub-contractors. The Contractor shall make changes and/or adjustments to the HVAC system components that are required by the Test and Balance Company to accomplish proper balancing. The TAB agency shall not supply or install any materials or balancing devices such as pulleys, drives, belts, etc. All of this work is by the Contractor and shall be performed at no additional cost to the Owner.
- E. The test and balance report complete with a summary page listing all deficiencies shall be submitted to the Architect for review. If the Architect agrees with the report, he shall sign it and return it to the Contractor. The test and balance report must be complete and must be accepted by the Architect prior to acceptance of the project. Any outstanding test and balance items shall be placed on the punch list and a monetary value shall be assigned to them.
- F. After all deficiencies have been corrected the Architect shall sign the testing and balancing report, and the Test and Balance Company shall supply four (4) copies of the final and complete report to the Contractor for inclusion in the Operation and Maintenance Manuals.

- G. The Test and Balance Company shall obtain a copy of all HVAC related shop drawings from the contractor. The contractor shall provide a set of approved shop drawings to the TAB contractor within 30 days from receiving approved shop drawings.
- H. The items requiring testing, adjusting, and balancing include (but are not restricted to) the following:
 - 1. Air Systems:
 - a. Supply Fan AHU
 - b. Supply Fan ERV
 - c. Relief Fans
 - d. Exhaust Fans
 - e. Zone Branch and main ducts
 - f. VAV Systems
 - g. Diffusers, Registers, Grilles and Dampers
 - h. Coils (Air Temperatures)
 - i. Valves
 - j. Vibration Isolators
 - 2. Hydronic Systems:
 - a. Pumps
 - b. System Mains and Branches
 - c. Heat Exchangers
 - d. Coils
 - 3. Duct leakage tests.
- 1.3 DEFINITIONS
 - A. AABC: Associated Air Balance Council.
 - B. BAS: Building automation systems.
 - C. NEBB: National Environmental Balancing Bureau.
 - D. TAB: Testing, adjusting, and balancing.
 - E. TABB: Testing, Adjusting, and Balancing Bureau.
 - F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
 - G. TDH: Total dynamic head.

1.4 INFORMATIONAL SUBMITTALS

A. Certified TAB reports.
- B. Sample report forms.
- 1.5 QUALITY ASSURANCE
 - A. TAB Specialists Qualifications: Certified by AABC NEBB or TABB.
 - B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
 - C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
 - D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."
- PART 2 PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in

AMCA 201, "Fans and Systems," or in SMACNAs "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine operating safety interlocks and controls on HVAC equipment.
- K. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 - b. Duct systems are complete with terminals installed.
 - c. Volume, smoke, and fire dampers are open and functional.
 - d. Clean filters are installed.
 - e. Fans are operating, free of vibration, and rotating in correct direction.
 - f. Variable-frequency controllers startup is complete and safeties are verified.
 - g. Automatic temperature-control systems are operational.
 - h. Ceilings are installed.
 - i. Windows and doors are installed.
 - j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC^S "National Standards for Total System Balance" NEBB^S "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

- 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
- 2. After testing and balancing, install test ports and duct access doors.
- 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish.
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturers outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems []'as-built" duct layouts.
- C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.
- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling-unit components.
- K. Verify that air duct system is sealed as specified.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.

- c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
- d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
- 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
- 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 4. Obtain approval from Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.6 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:

- 1. Manufacturers name, model number, and serial number.
- 2. Motor horsepower rating.
- 3. Motor rpm.
- 4. Phase and hertz.
- 5. Nameplate and measured voltage, each phase.
- 6. Nameplate and measured amperage, each phase.
- 7. Starter size and thermal-protection-element rating.
- 8. Service factor and frame size.

3.7 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record fan and motor operating data.

3.8 DUCT LEAKAGE TESTS

- A. Witness the duct pressure testing performed by Installer.
- B. Verify that proper test methods are used and that leakage rates are within specified tolerances.
- C. Report deficiencies observed.
- D. Ductwork that initially fails these tests shall be replaced, modified, resealed, etc. as required to meet the leakage requirement and then re-test to ensure compliance.

3.9 TOLERANCES

- A. Set HVAC system s airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Equipment with Fans: Plus or minus 10 percent.
 - 2. Exhaust Fans: Plus 10 percent.
 - 3. Outside Airflow: Plus 10 percent.
 - 4. Air Outlets and Inlets: Plus or minus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.10 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the reports binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.

- 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architects name and address.
 - 6. Engineer s name and address.
 - 7. Contractors name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 14. Test conditions for fans performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Fan drive settings including settings and percentage of maximum pitch diameter.
 - e. Settings for supply-air, static-pressure controller.
 - f. Other system operating conditions that affect performance.
- D. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer s serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.

- 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Preheat-coil static-pressure differential in inches wg.
 - g. Cooling-coil static-pressure differential in inches wg.
 - h. Heating-coil static-pressure differential in inches wg.
 - i. Outdoor airflow in cfm.
 - j. Return airflow in cfm.
 - k. Outdoor-air damper position.
 - 1. Return-air damper position.
 - m. Vortex damper position.
- E. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturers serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Motor Data:

3.

- a. Motor make, and frame type and size.
- b. Horsepower and rpm.
- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Sheave make, size in inches, and bore.
- f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
- g. Number, make, and size of belts.
- Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- F. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

- 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft.
 - g. Indicated airflow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual airflow rate in cfm.
 - j. Actual average velocity in fpm.
 - k. Barometric pressure in psig.
- G. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.11 VERIFICATION OF TAB REPORT

- A. The TAB specialists test and balance engineer shall conduct the inspection in the presence of Architect.
- B. Architect may randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- E. If TAB work fails, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialists final payment.
 - 3. If the second verification also fails, the design professional may contact AABC Headquarters regarding the AABC National Performance Guaranty.
- F. Prepare test and inspection reports.

3.12 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 05 93

SECTION 23 07 13 – DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply, return
 - 2. Tops of supply air diffusers, grilles and plenum boxes.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance, thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields as specified.
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
 - Manufacturer shall be one of the following:
 - a. Aeroflex, USA, Inc.
 - b. Armacell LLC.
- G. Fiber-Glass Blanket Insulation: Fiber-Glass bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Manufacturer shall be one of the following:
 - a. Certainteed Corporation.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. Knauf Insulation.
 - d. Manson Insulation Inc.
 - e. Owens Corning.

2.2 ADHESIVES

1.

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Manufacture shall be one of the following:
 - a. Aeroflex USA, Inc.
 - b. Armacell LLC.
 - c. Foster Brand.
- C. Fiber-Glass Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Manufacturer shall be one of the following:
 - a. Childers Brand.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand.
 - d. Mon-Eco Industries, Inc.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

- 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Manufacturer:
 - a. Foster Brand.
 - b. Knauf Insulation.
 - c. Vimasco Corporation.
 - d. Childers.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
 - 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.7 SECUREMENTS

- A. Bands:
 - 1. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inchdiameter shank, length to suit depth of insulation indicated.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - d. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - e. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - f. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturers recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.

- a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturers written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Seal penetrations through fire-rated assemblies.

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF FIBER-GLASS INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped

pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturers recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

3.8 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.

- C. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply air.
 - 2. Indoor, concealed return air.
 - 3. Indoor, tops of ceiling diffusers and grilles.
- B. Items Not Insulated:
 - 1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 2. Factory-insulated flexible ducts.
 - 3. Factory-insulated plenums and casings.
 - 4. Flexible connectors.
 - 5. Vibration-control devices.
 - 6. Factory-insulated access panels and doors.

3.11 DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2.125 inches thick and 0.75-lb/cu. ft. nominal density.
 - 2. Minimum installed R-value shall be R-6.0.
- B. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2.125 inches thick and 0.75-lb/cu. ft. nominal density.
 - 2. Minimum installed R-value shall be R-6.0.
- C. Concealed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2.125 inches thick and 0.75-lb/cu. ft. nominal density.
 - 2. Minimum installed R-value shall be R-6.0.
- D. Tops of supply air diffusers and grilles insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 2.125 inches thick and 0.75-lb/cu. ft. nominal density.
 - 2. Minimum installed R-value shall be R-6.0.

END OF SECTION 23 07 13

SECTION 23 07 19 – HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Condensate drain piping, indoors and outdoors.
 - 2. Refrigerant suction and hot-gas piping, indoors and outdoors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified.
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," and "Outdoor, Aboveground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Manufacturer shall be one of the following:
 - a. Armacell AP.
 - b. Aeroflex USA.
 - c. K-Flex USA.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Manufacturers shall be one of the following:
 - a. Childers Brand.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.

2.4 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. Metal Jacket:
 - 1. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Finish and thickness are indicated in field-applied jacket schedules.
 - b. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - c. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.

- 3) Tee covers.
- 4) Flange and union covers.
- 5) End caps.
- 6) Beveled collars.
- 7) Valve covers.
- 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- 2. At contractor's option, in lieu of 0.016 aluminum jacket, the contractor may use Venture Clad 1577CW multi-layered laminate coated, acrylic pressure sensitive adhesive jacket system.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.

- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Apply adhesives, mastics, and sealants at manufacturers recommended coverage rate and wet and dry film thicknesses.
- K. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- L. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- M. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies.

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractors option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

1.

3.9 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F:
 - All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4 inch thick.
- B. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4 inch thick.

3.10 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inches thick.

3.11 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material.
- B. If more than one material is listed, selection from materials listed is Contractors option.
- C. Refrigerant Piping, Concealed: 1. None.
- D. Refrigerant Piping, Exposed:1. Aluminum, Smooth: 0.016 inch thick.

3.12 OUTDOOR, FIELD-APPLIED MASTIC SCHEDULE

- A. Install two layers of mastic over insulation material.
- B. If more than one material is listed, selection from materials listed is Contractors option.
- C. Condensate Piping, Concealed: 1. None.
- D. Condensate Piping, Exposed:1. Vapor-Barrier Mastic: Solvent based.

END OF SECTION 23 07 19

SECTION 23 21 14 – HVAC CONDENSATE PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
1. Condensate-drain piping.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Copper Tube.
 - 2. Plastic pipe and fittings with solvent cement.
- B. Delegated-Design Submittal:
 - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 - 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 - 4. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:

- 1. Condensate-Drain Piping: 140 deg F.
- 2.2 COPPER TUBE AND FITTINGS
 - A. DWV Copper Tubing: ASTM B 306, Type DWV.

2.3 PLASTIC PIPE AND FITTINGS

- A. PVC Plastic Pipe: ASTM D 1785, with wall thickness as indicated in "Piping Applications" Article.
 - 1. PVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM D 2466 for Schedule 40 pipe; ASTM D 2467 for Schedule 80 pipe.

2.4 JOINING MATERIALS

- A. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.
- B. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- C. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- D. Solvent Cements for Joining Plastic Piping:
 - 1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - a. PVC solvent cement shall have a VOC content of 510 g/L or less.
 - b. Adhesive primer shall have a VOC content of 550 g/L or less.
 - c. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Public Health (formerly, the California Health Services) "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- E. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings:
 - 1. One-piece fitting with one threaded brass or copper insert and one solvent-cement-joint end of material and wall thickness to match plastic pipe material.
- B. Plastic-to-Metal Transition Unions:

1. Brass or copper end, solvent-cement-joint end of material and wall thickness to match plastic pipe material, rubber gasket, and threaded union.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Condensate-Drain Piping: Type DWV, drawn-temper copper tubing, wrought-copper fittings, and soldered joints or Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.
- B. Condensate-Drain Piping: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.

3.2 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

- L. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- M. Install shutoff valve immediately upstream of each dielectric fitting.
- N. Comply with requirements specified for identifying piping.

3.3 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric nipples.

3.4 HANGERS AND SUPPORTS

- A. Comply with requirements specified for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- C. Install hangers for copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/4Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- D. Plastic Piping Hanger Spacing: Space hangers shall be according to pipe manufacturers written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA^S "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- D. Brazed Joints: Construct joints according to AWS s "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- E. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
 - 3. PVC Nonpressure Piping: Join according to ASTM D 2855.
- F. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

END OF SECTION 23 21 14

SECTION 23 23 00 – REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Refrigerant pipes and fittings.
 - 2. Refrigerant piping valves and specialties.
 - 3. Refrigerants.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of valve, refrigerant pipe and refrigerant piping specialty.
- B. Shop Drawings:
 - 1. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes; flow capacities; pipe lengths, branch controller locations, valve arrangements and locations; slopes of horizontal runs; oil traps; double risers; wall and floor penetrations; and equipment connection details.
 - 2. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 - 3. Show interface and spatial relationships between piping and equipment.
 - 4. Calculate refrigerant volume based on actual pipe layout for each VRF system.
 - 5. Shop Drawing Scale: 1/8 inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

2.2 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 88, Type K or ASTM B 280, Type ACR.
- B. Contractor may use pre-insulated refrigerant line sets provided and/or approved by the VRF equipment manufacturer.

2.3 REFRIGERANTS

A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

- A. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR Type L, annealed- or drawn-temper tubing and copper fittings with brazed joints.
- B. Safety-Relief-Valve Discharge Piping: Copper, Type L, annealed- or drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.

- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified if valves or equipment requiring maintenance is concealed behind finished surfaces.
- L. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- M. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

3.3 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.
- D. Soldered Joints: Construct joints according to ASTM B 828 or CDAs "Copper Tube Handbook."
- E. Brazed Joints: Construct joints according to AWS S "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.

2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.

3.4 HANGERS AND SUPPORTS

- A. Comply with requirements for pipe hangers and supports specified.
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 - 1. NPS 1/2: Maximum span, 60 inches; minimum rod, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod, 1/4 inch.
 - 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod, 3/8 inch.
 - 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod, 3/8 inch.
 - 6. NPS 2: Maximum span, 96 inches; minimum rod, 3/8 inch.
 - 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod, 3/8 inch.
 - 8. NPS 3: Maximum span, 10 feet; minimum rod, 3/8 inch.
 - 9. NPS 4: Maximum span, 12 feet; minimum rod, 1/2 inch.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.
- B. Prepare test and inspection reports.
3.6 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

END OF SECTION 23 23 00

SECTION 23 31 13 – METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Sealants and gaskets.
 - 5. Hangers and supports.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA^S "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNAS "HVAC Duct Construction Standards Metal and Flexible"
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Adhesives.
 - 2. Sealants and gaskets.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNAs "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNAS "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNAS "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNAS "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNAS "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNAS "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNAS "HVAC Duct Construction Standards Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNAS "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNAS "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNAS "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNAS "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNAS "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with buttwelded longitudinal seams.

D. Tees and Laterals: Select types and fabricate according to SMACNAS "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNAS "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNAS "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Duct Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Galvanized sheet metal for rectangular and round ductwork shall have a minimum gauge of 26.

2.4 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 4 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services □"Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.

- 4. Water resistant.
- 5. Mold and mildew resistant.
- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Base: Synthetic rubber resin.
 - 3. Solvent: Toluene and heptane.
 - 4. Solids Content: Minimum 60 percent.
 - 5. Shore A Hardness: Minimum 60.
 - 6. Water resistant.
 - 7. Mold and mildew resistant.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA^S "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNAS "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements as specified for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article."
- B. If ducts are not listed in the "Duct Schedule" Article then seal unlisted ducts to the following seal classes according to SMACNAS "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Ducts:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNAS "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.

- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA^S "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors.
- B. Comply with SMACNAS "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNAs "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Ducts with a Pressure Class Higher Than **3-Inch wg**:
 - 1) Test representative duct sections totaling no less than **25 percent** of total installed duct area for each designated pressure class.
 - b. Exhaust Ducts with a Pressure Class of **2-Inch wg or Higher**:
 - 1) Test representative duct sections totaling no less than **50 percent** of total installed duct area for each designated pressure class.
 - c. Outdoor Air Ducts with a Pressure Class of **2-Inch wg or Higher**:
 - 1) Test representative duct sections totaling no less than **50 percent** of total installed duct area for each designated pressure class.

- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Test for leaks before applying external insulation.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give seven days advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.8 DUCT CLEANING

- A. Clean [new] [and] [existing] duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.

- 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
- 4. Coils and related components.
- 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
- 6. Supply-air ducts, dampers, actuators, and turning vanes.
- 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturers written instructions after removal of surface deposits and debris.

3.9 START UP

A. Air Balance: Comply with requirements as specified.

3.10 DUCT SCHEDULE

- A. Supply Ducts:
 - 1. Ducts Connected to Upstream of VAV boxes:
 - a. Pressure Class: Positive 6-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- B. Supply Ducts:
 - 1. Ducts Connected to Downstream of VAV boxes:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

C. Return Ducts:

- 1. Ducts Connected to Variable-Volume Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

END OF SECTION 23 31 13

SECTION 23 33 00 – AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Manual volume dampers.
 - 2. Motorized dampers.
 - 3. Spin Collars.
 - 4. Flange connectors.
 - 5. Turning vanes.
 - 6. Flexible connectors.
 - 7. Flexible ducts.
 - 8. Duct accessory hardware.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNAs "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.

- B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 MANUAL VOLUME DAMPERS

- A. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers:
 - a. Greenheck.
 - b. Dace Mfg.
 - c. Nailor Industries Inc.
 - d. Pottorff.
 - e. Ruskin Company.
 - 2. Comply with AMCA 500-D testing for damper rating.
 - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCAs Certified Ratings Seal for both air performance and air leakage.
 - 4. Suitable for horizontal or vertical applications.
 - 5. Frames:
 - a. Hat Channel shaped.
 - b. 0.031-inch- thick, galvanized sheet steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 6. Blades:
 - a. Multiple blade.
 - b. Opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.031 inch thick.
 - 7. Blade Axles: Galvanized steel.
 - 8. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 9. Blade Seals: Neoprene.
 - 10. Jamb Seals: Stainless Steel.
 - 11. Tie Bars and Brackets: Galvanized steel.
 - 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.

B. Jackshaft:

- 1. Size: 0.5-inch diameter.
- 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
- 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- C. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.4 MOTORIZED DAMPERS

- A. Low-leakage rating, with linkage outside airstream, and bearing AMCA^S Certified Ratings Seal for both air performance and air leakage.
- B. Manufacturers:
 - 1. Greenheck.
 - 2. Flex-Tek Group.
 - 3. Nailor Industries Inc.
 - 4. Pottorff.
 - 5. Ruskin Company.
- C. For Round Duct Type, Mechanical Contractor shall furnish and install motorized dampers at outdoor intakes as indicated on mechanical and architectural drawings. Damper shall be parallel blade motorized type equivalent to Ruskin CDRS25, Greenheck Model VCDR-53, Arrow Series 250SRD or equal. Motorized dampers shall be operated by 120/1/60 electric actuator as indicated on plans. Provide Interlock with respective air handling unit. Interlock with respective air handling unit shall be low voltage. Damper shall be complete with outboard support bearing, blade and jamb seals. Dampers shall be low leakage type.
- D. For Rectangular Duct Type, Mechanical Contractor shall furnish and install motorized dampers at outdoor intakes as indicated on mechanical and architectural drawings. Damper shall be parallel blade motorized type equivalent to Ruskin CD36/PB, Arrow Series 1770, Greenheck Model VCD-23 or equal. Motorized dampers shall be operated by 120/1/60 electric actuator as indicated on plans. Provide Interlock with respective air handling unit. Interlock with respective air handling unit shall be low voltage. Damper shall be complete with outboard support bearing, blade and jamb seals. Dampers shall be low leakage type.

E. Frames:

- 1. Hat shaped.
- 2. 0.064-inch- thick, galvanized sheet steel.
- 3. Mitered and welded corners.
- F. Blades:
 - 1. Multiple blade with maximum blade width of 6 inches.
 - 2. Opposed-blade design.
 - 3. Galvanized-steel.
 - 4. 0.064 inch thick single skin.
 - 5. Blade Edging: Closed-cell neoprene.
 - 6. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- G. Blade Axles: 1/2-inch- diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

H. Bearings:

- 1. Molded synthetic.
- 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 3. Thrust bearings at each end of every blade.

2.5 SPIN COLLARS

A. All round take-offs to round branch duct shall be made with factory fabricated spin-type collar fittings with balancing damper and constructed of minimum 26 ga galvanized steel. The damper shall have a raised 2" handle with a high quality locking quadrant. A 3/8" continuous rod with "U" bolts connects the damper to the rod. Nylon end bearing are required where the rod penetrates the spin collar barrel. These spin-collars shall be as manufactured by Flexmaster Model FLD-B03, Dace #26ga MSD-C03 or approved equal.

2.6 FLEXIBLE CONNECTORS

- A. Materials: Flame-retardant or noncombustible fabrics.
- B. Coatings and Adhesives: Comply with UL 181, Class 1.
- C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.

7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.7 FLEXIBLE DUCTS

- A. Manufacturers:
 - 1. Thermaflex Model M-KE
 - 2. Flexmaster 1M
- B. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
 - 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1. (R6)
- C. Flexible Duct Connectors:
 - 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.
 - 2. Non-Clamp Connectors: Liquid adhesive plus tape.

2.8 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA^S "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire dampers according to UL listing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. Upstream from duct filters.
 - 2. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 3. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 4. At each change in direction and at maximum 50-foot spacing.
 - 5. Control devices requiring inspection.
 - 6. Elsewhere as indicated.
- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- N. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- O. Connect flexible ducts to metal ducts with draw bands.
- P. Install duct test holes where required for testing and balancing purposes.

Q. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 33 00

SECTION 23 34 23 – HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Inline supply fans.

1.3 PERFORMANCE REQUIREMENTS

A. Operating Limits: Classify according to AMCA 99.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
 - 7. Fan speed controllers.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.7 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 INLINE SUPPLY FANS

- A. Manufacturers:
 - 1. Cook.
 - 2. Greenheck.
 - 3. ACME
 - 4. Pen-Barry
 - 5. Twin City
- B. All supply fans shall be equipped with automatic back-draft dampers, variable frequency drive (integral), and integral disconnect switch unless noted otherwise. Fan motors shall be of the 40 deg C ambient temperature rise type and shall be suitable for continuous duty operation.
- C. Housing: Steel.
- D. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Enclosure Type: Totally enclosed, fan cooled.

2.3 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Install units with clearances for service and maintenance.
- C. Label units according to requirements specified.

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors.
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment.

3.3 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Replace fan and motor pulleys as required to achieve design airflow.
- D. Lubricate bearings.

END OF SECTION 23 34 23

SECTION 23 37 13 – DIFFUSERS, REGISTERS, GRILLES, AND LOUVERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2. Fixed face registers and grilles.
- B. Related Sections:
 - 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 REGISTERS AND GRILLES

- A. Fixed Face Register:
 - 1. Manufacturers:
 - a. Titus.
 - b. Price Industries.
 - c. Nailor Industries.
 - d. Metalaire, Inc.
 - 2. Material: Aluminum.
 - 3. Finish: Baked enamel, white.
 - 4. Core Construction: Integral.
 - 5. Frame: 1 inch wide.
 - 6. Mounting: Lay in.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13

SECTION 23 81 27 – MINI-SPLIT-SYSTEM (1 TO 1) AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes mini split-system DX air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Samples for Initial Selection: For units with factory-applied color finishes.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.6 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.7 WARRANTY

- A. Special Warranty: Manufacturers standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: Five year(s) from date of Substantial Completion.
 - b. For Parts: Five year(s) from date of Substantial Completion.
 - c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 MANUFACTURERS
 - A. Mitsubishi (Basis of Design)

2.2 P-SERIES OUTDOOR UNIT

- A. General: The outdoor units shall be equipped with multiple circuit boards that interface to the M-NET controls system and shall perform all functions necessary for operation. The outdoor unit shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory.
- Β.
- 1. Outdoor unit shall have a sound rating no higher than 59 dB(A).
- 2. Both refrigerant lines from the outdoor unit to indoor units shall be individually insulated.
- 3. The outdoor unit shall have an accumulator with refrigerant level sensors and controls.
- 4. The outdoor unit shall have a high pressure safety switch, low pressure safety switch and over-current protection and DC bus protection.
- 5. The outdoor unit shall be capable of cooling operation down to 23°F outdoor ambient without additional low ambient controls.
- 6. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.
- C. Unit Cabinet:
 - 1. The casing shall be fabricated of galvanized steel, bonderized and finished with a powder coated baked enamel.

D. Fan:

- 1. The unit shall be furnished with two direct drive, variable speed motors.
- 2. The fans will be forward curved type blades for quiet operation.
- 3. The fan motor shall have inherent protection, have permanently lubricated bearings, and be completely variable speed.
- 4. The fan motor shall be mounted for quiet operation.
- 5. The fan shall be provided with a raised guard to prevent contact with moving parts.
- 6. The outdoor unit shall have horizontal discharge airflow.

E. Refrigerant

1. R410A refrigerant shall be required for all S-Series outdoor unit systems.

F. Coil:

- 1. The outdoor coil shall be of nonferrous construction with lanced or corrugated fins on copper tubing.
- 2. The coil fins will have a factory applied corrosion resistant blue-fin finish.
- 3. The coil shall be protected with an integral metal guard.
- 4. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.

G. Compressor:

- 1. The compressor shall be a single high performance, inverter driven, modulating capacity scroll compressor.
- 2. The compressor shall be equipped with an internal thermal overload.
- 3. The compressor shall be mounted to avoid the transmission of vibration.
- H. Electrical:
 - 1. The outdoor unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
 - 2. The unit shall be capable of satisfactory operation within voltage limitations of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz)
 - 3. The outdoor unit shall be controlled by integral microprocessors.
 - 4. The control circuit between the indoor units and the outdoor unit shall be 24VDC completed using a 2-conductor, twisted pair, non-polar shielded cable to provide total integration of the system.

2.3 CEILING CASSETTE INDOOR UNIT

A. General:

1. The unit shall be an indoor wall mounted cassette type unit.

B. Indoor Unit

1. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, an auto restart function, and a test run switch. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. Unit Cabinet:

- 1. All casings, regardless of model size, shall have the same white finish
- 2. Multi directional drain and refrigerant piping offering four (4) directions for refrigerant piping and two (2) directions for draining shall be standard.
- 3. There shall be a separate back plate which secures the unit firmly to the wall.

D. Fan:

1. The indoor fan shall be an assembly with one or two line-flow fan(s) direct driven by a single motor.

- 2. The indoor fan shall be statically and dynamically balanced to run on a motor with permanently lubricated bearings.
- 3. A manual adjustable guide vane shall be provided with the ability to change the airflow from side to side (left to right).
- 4. A motorized air sweep louver shall provide an automatic change in airflow by directing the air up and down to provide uniform air distribution.
- E. Drain Assembly:
 - 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 - 2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
 - 3. Field Piping Connection: Non-ferrous material.
- F. Filter:
 - 1. Return air shall be filtered by means of an easily removable, washable filter.
- G. Coil:
 - 1. The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
 - 2. The tubing shall have inner grooves for high efficiency heat exchange.
 - 3. All tube joints shall be brazed with phos-copper or silver alloy.
 - 4. The coils shall be pressure tested at the factory.
 - 5. A condensate pan and drain shall be provided under the coil.
 - 6. Both refrigerant lines to the PKFY indoor units shall be insulated.
- H. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.
 - 2. The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz)
- I. Controls:
 - 1. This unit shall use controls provided by Mitsubishi Electric Cooling & Heating to perform functions necessary to operate the system. Please refer to Part 4 of this guide specification for details on controllers and other control options.
 - 2. The unit shall be able to control external backup heat.
 - 3. The unit shall have a factory built in receiver for wireless remote control
 - 4. Indoor unit shall compensate for the higher temperature sensed by the return air sensor compared to the temperature at level of the occupant when in HEAT mode. Disabling of compensation shall be possible for individual units to accommodate instances when compensation is not required.
 - 5. Control board shall include contacts for control of external heat source. External heat may be energized as second stage with $1.8^{\circ}F 9.0^{\circ}F$ adjustable deadband from set point.
 - 6. Indoor unit shall include no less than four (4) digital inputs capable of being used for customizable control strategies.
 - 7. Indoor unit shall include no less than three (3) digital outputs capable of being used for customizable control strategies.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install unit's level and plumb.
- B. Install evaporator-fan components using manufacturers standard mounting devices securely fastened to building structure.
- C. Install and connect pre-charged refrigerant tubing to components quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

- A. Manufacturers Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

END OF SECTION 23 81 27

SECTION 23 90 20 – TEMPERATURE CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electric temperature control system by the air conditioning equipment manufacturer, to be installed by the mechanical contractor.
 - 2. Thermostats.
 - 3. Control Wiring.

1.3 ACTION SUBMITTALS

- A. Shop Drawings:
 - 1. General Requirements.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.

PART 2 - PRODUCTS

2.1 THERMOSTAT

A. Provide <u>fully automatic</u> programmable (7 day) room type thermostat as indicated on Plans to cycle compressor on cooling cycle, and compressor and/or electric strips in stages on heating cycle as required to maintain space conditions. Unit shall be wired for constant or automatic fan operation and shall be electrically interlocked such that the compressor may not run nor the electric strip heaters be energized unless the evaporator fan is operating. Thermostat shall be complete with fan "Auto-On" switch and system "Auto-Heat-Off-Cool" switch. Thermostats shall be mounted to meet latest A.D.A. requirements.

2.2 CONTROL WIRING

- A. All wiring required in the control systems, including electrical connections for the thermostats, firestats, smoke detectors, exhaust fans and all interlocking motor control wiring shall be furnished and installed by Mechanical Contractor.
- B. All wiring shall be in conduit and in accordance with the National Electrical Code (N.E.C.).
- C. All control wiring located outdoors shall be installed in rigid or intermediate metal conduit.
- D. All control wiring located indoors where an accessible ceiling is not available shall be installed in E.M.T. conduit.
- E. All control wiring located above accessible ceilings shall be N.E.C. approved cable. All control wiring located above accessible ceilings used as air plenums shall be N.E.C. approved "plenum cable".
- F. All conductors shall be copper. Conductors used for power circuits shall be #12 TW minimum. Conductors used for control circuits shall be #18 TW (single strand) minimum. Conductors used for sensor circuits shall be #18 TW (single strand) minimum. Control wiring for DX equipment thermostats shall be 10 conductor cables.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. Verify compatibility with and suitability of substrates.
- B. Examine roughing-in for products to verify actual locations of connections before installation.
 - 1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
 - 2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

END OF SECTION 23 90 20

SECTION 26 05 00 – COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. This Section includes the following:
 - 1. Supporting devices for electrical components.
 - 2. Electricity-metering components.
 - 3. Concrete equipment bases.
 - 4. Touchup painting.

- 1.2 DEFINITIONS
 - A. EMT: Electrical metallic tubing.
 - B. FMC: Flexible metal conduit.
 - C. IMC: Intermediate metal conduit.
 - D. LFMC: Liquidtight flexible metal conduit.
 - E. RNC: Rigid nonmetallic conduit.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

1.4 COORDINATION

- A. Coordinate chases, slots, inserts, sleeves, and openings with general construction work and arrange in building structure during progress of construction to facilitate the electrical installations that follow.
 - 1. Set inserts and sleeves in poured-in-place concrete, masonry work, and other structural components as they are constructed.

- B. Sequence, coordinate, and integrate installing electrical materials and equipment for efficient flow of the Work. Coordinate installing large equipment requiring positioning before closing in the building.
- C. Coordinate electrical service connections with buildings and grounds.
- D. Where electrical identification devices are applied to field-finished surfaces, coordinate installation of identification devices with completion of finished surface.
- E. Where electrical identification markings and devices will be concealed by acoustical ceilings and similar finishes, coordinate installation of these items before ceiling installation.
- F. Coordinate connecting to all equipment with equipment provider. This includes mechanical, plumbing, owner provided and contractor provided equipment. Contractor to refer to equipment installation documents prior to any rough-in.
- G. Contractor to coordinate with door hardware provider, architect and owner prior to installation of any devices associated with doors to verify door operational requirement, placement of proximity readers, motion sensors, door switches, fire alarm control, magnetic locks, hold open devices, etc..
- H. Contractor to coordinate with architectural millwork shop drawings prior to rough-in for locations of under counter lighting to be installed in and around millwork. No receptacles shall be installed in an enclosed cabinet unless noted on the drawings. Outlets for refrigerators, microwaves, etc. shall be installed in the space identified on the millwork shop drawings.
- I. Contractor shall not penetrate any stair wall assemble with conduit, boxes, cabling and the like, except for items that serve the stairwell.
- J. The contractor shall label the main service disconnecting means with the maximum available fault current shall be listed on the device to meet the requirements of NFPA 70:110.24. The labeling shall be engraved plastic. The maximum available fault current shall be obtained from the electrical utility for the secondary side of the utility transformer.

PART 2 - PRODUCTS

2.1 SUPPORTING DEVICES

- A. Material: Cold-formed steel, with corrosion-resistant coating acceptable to authorities having jurisdiction.
- B. Metal Items for Use Outdoors or in Damp Locations: Hot-dip galvanized steel.
- C. Slotted-Steel Channel Supports: Flange edges turned toward web, and 9/16-inch- (14-mm-) diameter slotted holes at a maximum of 2 inches (50 mm) o.c., in webs.

- D. Raceway and Cable Supports: Manufactured clevis hangers, riser clamps, straps, threaded Cclamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or clicktype hangers.
- E. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for nonarmored electrical cables in riser conduits. Plugs have number and size of conductor gripping holes as required to suit individual risers. Body constructed of malleable-iron casting with hot-dip galvanized finish.
- F. Expansion Anchors: Carbon-steel wedge or sleeve type.
- G. Toggle Bolts: All-steel springhead type.
- H. Powder-Driven Threaded Studs: Heat-treated steel.

2.2 EQUIPMENT FOR ELECTRICITY METERING BY CONTRACTOR

A. Meter: Contractor shall provide metering per the local utility. Contractor shall provide all necessary enclosures, meter cans, etc. per the local utility requirements including any fees associated with the service.

2.3 CONCRETE BASES

A. Concrete: 3000-psi (20.7-MPa), 28-day compressive strength as specified

2.4 TOUCH-UP PAINT

- A. For Equipment: Equipment manufacturers paint selected to match installed equipment finish.
- B. Galvanized Surfaces: Zinc-rich paint recommended by item manufacturer.

PART 3 - EXECUTION

3.1 ELECTRICAL EQUIPMENT INSTALLATION

- A. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide the maximum possible headroom.
- B. Materials and Components: Install level, plumb, and parallel and perpendicular to other building systems and components, unless otherwise indicated.
- C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components. Connect for ease of disconnecting, with minimum interference with other installations.

D. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 ELECTRICAL SUPPORTING DEVICE APPLICATION

- A. Damp Locations and Outdoors: Hot-dip galvanized materials or nonmetallic, U-channel system components.
- B. Dry Locations: Steel materials.
- C. Support Clamps for PVC Raceways: Click-type clamp system.
- D. Selection of Supports: Comply with manufacturers written instructions.
- E. Strength of Supports: Adequate to carry present and future loads, times a safety factor of at least four; minimum of 200-lb (90-kg) design load.

3.3 SUPPORT INSTALLATION

- A. Install support devices to securely and permanently fasten and support electrical components.
- B. Install individual and multiple raceway hangers and riser clamps to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assemblies and for securing hanger rods and conduits.
- C. Support parallel runs of horizontal raceways together on trapeze- or bracket-type hangers.
- D. Size supports for multiple raceway installations so capacity can be increased by a 25 percent minimum in the future.
- E. Support individual horizontal raceways with separate, malleable-iron pipe hangers or clamps.
- F. Install 1/4-inch- (6-mm-) diameter or larger threaded steel hanger rods, unless otherwise indicated.
- G. Spring-steel fasteners specifically designed for supporting single conduits or tubing may be used instead of malleable-iron hangers for 1-1/2-inch (38-mm) and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings and for fastening raceways to slotted channel and angle supports.
- H. Arrange supports in vertical runs so the weight of raceways and enclosed conductors is carried entirely by raceway supports, with no weight load on raceway terminals.
- I. Simultaneously install vertical conductor supports with conductors.
- J. Separately support cast boxes that are threaded to raceways and used for fixture support. Support sheet-metal boxes directly from the building structure or by bar hangers. If bar hangers

are used, attach bar to raceways on opposite sides of the box and support the raceway with an approved fastener not more than 24 inches (610 mm) from the box.

- K. Install metal channel racks for mounting cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices unless components are mounted directly to structural elements of adequate strength.
- L. Install sleeves for cable and raceway penetrations of concrete slabs and walls unless core-drilled holes are used. Install sleeves for cable and raceway penetrations of masonry and fire-rated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.
- M. Securely fasten electrical items and their supports to the building structure, unless otherwise indicated. Perform fastening according to the following unless other fastening methods are indicated:
 - 1. Wood: Fasten with wood screws.
 - 2. Masonry: Toggle bolts on hollow masonry units and expansion bolts on solid masonry units.
 - 3. New Concrete: Concrete inserts with machine screws and bolts.
 - 4. Existing Concrete: Expansion bolts.
 - 5. Instead of expansion bolts, threaded studs driven by a powder charge and provided with lock washers may be used in existing concrete.
 - 6. Steel: Welded threaded studs or spring-tension clamps on steel.
 - a. Field Welding: Comply with AWS D1.1.
 - 7. Welding to steel structure may be used only for threaded studs, not for conduits, pipe straps, or other items.
 - 8. Light Steel: Sheet-metal screws.
 - 9. Fasteners: Select so the load applied to each fastener does not exceed 25 percent of its proof-test load.

3.4 FIRESTOPPING AND FIRE RATED WALLS/CEILINGS/FLOORS

- A. Apply firestopping to cable and raceway penetrations of fire-rated floor and wall assemblies to achieve fire-resistance rating of the assembly. Firestopping materials and installation requirements are specified.
- B. Repair and refinish disturbed finish materials and other surfaces to match adjacent undisturbed surfaces. Install new fireproofing where existing firestopping has been disturbed. Repair and refinish materials and other surfaces by skilled mechanics of trades involved.

3.5 CONCRETE BASES

A. Provide a concrete base for all floor mounted equipment. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger, in both directions, than supported unit. Follow supported equipment manufacturers anchorage recommendations and setting templates for anchor-bolt and tie locations, unless otherwise indicated. Use 3000-psi

(20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Section "Cast-in-Place Concrete."

3.6 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces required to permit electrical installations. Perform cutting by skilled mechanics of trades involved.
- B. Repair and refinish disturbed finish materials and other surfaces to match adjacent undisturbed surfaces. Install new fireproofing where existing firestopping has been disturbed. Repair and refinish materials and other surfaces by skilled mechanics of trades involved.

3.7 REFINISHING AND TOUCH-UP PAINTING

- A. Refinish and touch up paint.
 - 1. Clean damaged and disturbed areas and apply primer, intermediate, and finish coats to suit the degree of damage at each location.
 - 2. Follow paint manufacturers written instructions for surface preparation and for timing and application of successive coats.
 - 3. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 4. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.8 CLEANING AND PROTECTION

- A. On completion of installation, including outlets, fittings, and devices, inspect exposed finish. Remove burrs, dirt, paint spots, and construction debris.
- B. Protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION 26 05 00
SECTION 26 05 19 – LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70- Latest edition or edition enforced by state and local code authority.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.
- B. Conductor Material: Copper; stranded conductor or solid conductor for No. 10 AWG and smaller, stranded for No. 8 AWG and larger.
- C. Conductor Insulation Types: Type THHN-THWN.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR AND INSULATION APPLICATIONS

- A. Service Entrance: Type THHN-THWN, single conductors in raceway.
- B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- E. Exposed Branch Circuits, including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway .
- G. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THHN-THWN, single conductors in raceway.
- H. Fire Alarm Cabling: Plenum rated in plenum areas, exposed above accessible ceilings and in conduit when concealed in finished walls, unaccessible ceilings. Secured per NFPA 70-760.
- I. Low Voltage Cabling: Plenum rated in plenum areas, exposed above accessible ceilings and in conduit when concealed in finished walls, unaccessible ceilings. Secured per NFPA 70-760.
- J. Single Phase Circuits: Provide a dedicated neutral. Sharing of neutrals is not allowed.

3.2 INSTALLATION

- A. Conceal cables in conduit in finished walls, unaccessible ceilings, and floors.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturers recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- D. Support cables according to Section "Basic Electrical Materials and Methods."
- E. Identify and color-code conductors and cables according to Section "Electrical Identification."

F. Use #10 AWG conductors for 20 amperage 120 circuits when the circuit conductors are longer than 75 feet. Use #10 AWG conductors for 20 amperage 277 circuits when the circuit conductors are longer than 200 feet.

3.3 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer s published torquetightening values.
 - 1. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

END OF SECTION 26 05 19

SECTION 26 05 26 – GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- C. Bare Grounding Conductor and Conductor Protector for Wood Poles:
 - 1. No. 4 AWG minimum, soft-drawn copper.

- 2. Conductor Protector: Half-round PVC or wood molding. If wood, use pressure-treated fir or cypress or cedar.
- D. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches by 24" minimum in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by10 feet (19 mm by 3 m) in diameter.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.
- B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus on insulated spacers 1 inch, minimum, from wall 6 inches above finished floor, unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.
- D. Conductor Terminations and Connections:

- 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
- 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
- 3. Connections to Ground Rods at Test Wells: Bolted connectors.
- 4. Connections to Structural Steel: Welded connectors.

3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
 - 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
 - 9. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units.
 - 10. X-ray Equipment Circuits: Install insulated equipment grounding conductor in circuits supplying x-ray equipment.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to ductmounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.
- F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

- G. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-2-by-12-inch grounding bus.
 - 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
- C. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building s main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- D. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

- 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
- 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- 3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- B. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity 500 kVA and less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Manhole Grounds: 10 ohms.
- C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 05 26

SECTION 26 05 29 – HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.
- B. Related Sections include the following:
 - 1. Division 26 Section "Vibration and Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel slotted support systems.
 - 2. Nonmetallic slotted support systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Equipment supports.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Comply with NFPA 70.

1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut; Tyco International, Ltd.

- g. Wesanco, Inc.
- 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- 3. Nonmetallic Coatings: Manufacturers standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 4. Painted Coatings: Manufacturer standard painted coating applied according to MFMA-4.
- 5. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened Portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened Portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.

- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps / single-bolt conduit clamps using spring friction action for retention in support channel.
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT IMC RMC EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 or Spring-tension clamps.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."

- C. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturers setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer s written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 05 29

SECTION 26 05 33 – RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Refer to architectural for firestopping materials and installation at penetrations through walls, ceilings, and other fire-rated elements.
 - 2. "Basic Electrical Materials and Methods" for supports, anchors, and identification products.
 - 3. "Wiring Devices" for devices installed in boxes and for floor-box service fittings.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. FMC: Flexible metal conduit.
- D. IMC: Intermediate metal conduit.
- E. LFMC: Liquidtight flexible metal conduit.
- F. LFNC: Liquidtight flexible nonmetallic conduit.
- G. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, floor boxes, and cabinets.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70-Latest edition or edition enforced by state and local code authority.
- 1.6 COORDINATION
 - A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 METAL WIREWAYS

- A. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1 or 3R.
- B. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.
- D. Wireway Covers: Hinged type.
- E. Finish: Manufacturers standard enamel finish.

2.2 NONMETALLIC WIREWAYS

- A. Description: Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets.
- B. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

2.3 SURFACE RACEWAYS

- A. Surface Metal Raceways: Galvanized steel with snap-on covers. Finish with manufacturer standard prime coating and two coats of paint. Color by Architect.
- B. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways.

2.4 BOXES, ENCLOSURES, AND CABINETS

- Floor Boxes: Cast metal, fully adjustable, rectangular with four separate wiring compartments for power outlets, voice and data outlets, and/or AV devices as indicated on the drawing. Wiremold RFB4 Series, T&B 665 Series or approved equal. Covers shall be UL Listed to U.S. and Canadian safety standards for tile, carpet, wood, bare concrete and terrazzo floors. Covers shall be selected by the architect and shall be of Nickel, Brass, Black, Gray or Bronze.
- B. Poke Thru Floor Boxes: Two hour rated poke thru floor unit with capabilities of two duplex power receptacles, data and AV devices. Provide power, data and phone outlets indicated on drawing. Wiremold Evolution Series 6AT or prior approved equal. Covers shall be selected by the architect and shall be of Nickel, Brass, Black, Gray or Bronze. Poke thru floor boxes are to be utilized on upper floors unless noted otherwise. There must be accessibility in the space below the poke thru box.
- C. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- D. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.
- E. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturers standard enamel.
 - 2. Nonmetallic Enclosures: Plastic, finished inside with radio-frequency-resistant paint.
- F. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturers standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.

2.5 FACTORY FINISHES

A. Finish: For raceway, enclosure, or cabinet components, provide manufacturers standard primecoat finish ready for field painting.

2.6 METAL CONDUIT AND TUBING

- A. Rigid Steel Conduit: ANSI C80.1.
- B. Aluminum Rigid Conduit: ANSI C80.5.
- C. IMC: ANSI C80.6.
- D. Plastic-Coated Steel Conduit and Fittings: NEMA RN 1.
- E. Plastic Coated IMC and Fittings: NEMA RN 1.
- F. EMT and Fittings: ANSI C 80.3.
- G. EMT and Fittings: ANSI C80.3.
- H. FMC: Aluminum
- I. LFMC: Flexible steel conduit with PVC jacket.
- J. Fittings: NEMA FB 1; compatible with conduit and tubing materials.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors:
 - 1. Exposed: Rigid steel or IMC.
 - 2. Concealed: Rigid steel or IMC.
 - 3. Underground, Single Run: RNC.
 - 4. Underground, Grouped: RNC.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 6. Boxes and Enclosures: NEMA 250, Type 4.
- B. Indoors:
 - 1. Exposed: EMT in non finished areas. Surface metal raceway in existing finished unaccessible areas unless noted otherwise.
 - 2. Concealed: EMT.
 - 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC; except use LFMC in damp or wet locations.
 - 4. Damp or Wet Locations above Ground: Rigid steel conduit.
 - 5. Boxes and Enclosures: NEMA 250, Type 1, except as follows:

- a. Damp or Wet Locations: NEMA 250, Type 4, stainless steel.
- C. Minimum Raceway Size: 3/4-inch trade size (DN 21) below grade and ½ inch trade size above grade.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
- E. Contractor to provide metal raceway in Patient Care Areas per 517.13. Raceway shall be installed as a redundant ground. Raceway shall be a considered a ground.

3.2 INSTALLATION

- A. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- B. Complete raceway installation before starting conductor installation.
- C. Support raceways as specified in "Basic Electrical Materials and Methods."
- D. Install temporary closures to prevent foreign matter from entering raceways.
- E. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.
- F. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 - 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.
- H. Raceways Embedded in Slabs: Install in middle 1/3 of slab thickness where practical and leave at least 2 inches (50 mm) of concrete cover. Conduits larger than 1" shall not be installed in the slab.
 - 1. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 - 2. Space raceways laterally to prevent voids in concrete.
 - 3. Run conduit larger than 1-inch trade size (DN 27) parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
- I. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.

- 1. Run parallel or banked raceways together on common supports.
- 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.
- J. Join raceways with fittings designed and approved for that purpose and make joints tight.
 - 1. Use insulating bushings to protect conductors.
- K. Tighten set screws of threadless fittings with suitable tools.
- L. Terminations:
 - 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
 - 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.
- M. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- N. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches (150 mm) above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.
- O. Flexible Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.
- P. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.
- Q. Set floor boxes level and flush with finished floor surface.
- R. Install hinged-cover enclosures and cabinets plumb. Support at each corner.

3.3 **PROTECTION**

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

- 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
- 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.4 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 26 05 33

SECTION 26 05 53 – IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Identification for conductors and communication and control cable.
 - 2. Warning labels and signs.
 - 3. Instruction signs.
 - 4. Equipment identification labels.
 - 5. Miscellaneous identification products.

1.3 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
- C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and ANSI C2.
- B. Comply with NFPA 70.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturers wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes and standards. Use consistent designations throughout Project.

- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

- 2.1 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS
 - A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.
 - B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.2 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.
- C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 7 by 10 inches.
- D. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. in. and 1/8 inch thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.4 EQUIPMENT IDENTIFICATION LABELS

A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength: 50 lb, minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- B. Paint: Paint materials and application requirements are specified in Division 09 painting Sections.
 - 1. Exterior Concrete Unit Masonry:
 - a. Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a block filler.
 - 1) Block Filler: Concrete unit masonry block filler.
 - 2) Finish Coats: Exterior semigloss acrylic enamel.
 - 2. Exterior Ferrous Metal:
 - a. Semigloss Alkyd-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Exterior ferrous-metal primer.
 - 2) Finish Coats: Exterior semigloss alkyd enamel.
 - 3. Exterior Zinc-Coated Metal (except Raceways):
 - 1) Primer: Exterior zinc-coated metal primer.
 - 2) Finish Coats: Exterior semigloss alkyd enamel.
 - 4. Interior Ferrous Metal:

a.

a.

- Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Interior ferrous-metal primer.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- 5. Interior Zinc-Coated Metal (except Raceways):
 - Semigloss Acrylic-Enamel Finish: Two finish coat(s) over a primer.
 - 1) Primer: Interior zinc-coated metal primer.
 - 2) Finish Coats: Interior semigloss acrylic enamel.
- C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use color-coding conductor tape. Identify each ungrounded conductor according to source and circuit number.
- B. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source and circuit number.
- C. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, signal, sound, intercommunications, voice, and data connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturers wiring diagrams, and Operation and Maintenance Manual.
- D. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply self-adhesive warning labels. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.
 - 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.
 - 2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- E. Instruction Signs:
 - 1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
 - 2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch- high letters for emergency instructions at equipment used for power transfer.
- F. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control,

communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

- 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high label; where 2 lines of text are required, use labels 2 inches high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
- 2. Equipment to Be Labeled:
 - a. Panelboards, electrical cabinets, and enclosures.
 - b. Access doors and panels for concealed electrical items.
 - c. Electrical switchgear and switchboards.
 - d. Transformers.
 - e. Emergency system boxes and enclosures.
 - f. Receptacles with panel and circuit numbers.
 - g. Disconnect switches.
 - h. Enclosed circuit breakers.
 - i. Power transfer equipment.
 - j. Contactors.

3.2 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.
- F. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service feeder branch-circuit service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 480/277-V Circuits:

- a. Phase A: Brown.
- b. Phase B: Orange.
- c. Phase C: Yellow.
- 4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

END OF SECTION 26 05 53

SECTION 26 22 00 – LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:
 - 1. Distribution transformers.

1.2 SUBMITTALS

- A. Product Data Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.
- B. Shop Drawings: Wiring and connection diagrams.
- C. Output Settings Reports: Record of tap adjustments specified in Part 3.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with IEEE C 57.12.91.
- C. Energy-Efficient Transformers Rated 15 kVA and Larger: Certified as meeting DOE 2016, Class 1 efficiency levels when tested according to DOE 2016.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturers written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

1.5 COORDINATION

A. Coordinate installation of wall-mounting and structure-hanging supports.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cutler-Hammer
 - 2. GE Electrical Distribution & Control
 - 3. Olsun
 - 4. Siemens Energy & Automation, Inc
 - 5. Square D/Groupe Schneider NA

2.2 MATERIALS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Cores: Grain-oriented, non-aging silicon steel.
- C. Coils: Continuous windings without splices, except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Copper.

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NEMA ST 20, DOE 2016 and list and label as complying with UL 1561.
- B. Provide transformers that are internally braced to withstand seismic forces specified in "Seismic Controls for Electrical Work."
- C. Cores: One leg per phase.
- D. Enclosure: Ventilated, NEMA 250, Type 2.
- E. Indoor Transformer Enclosure Finish: Comply with NEMA 250 for "Indoor Corrosion Protection."
 - 1. Finish Color: Gray.
- F. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.
- G. Taps for Transformers Smaller Than 3 kVA: One 5 percent tap above normal full capacity.
- H. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

- I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
- J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
- K. Wall Brackets: Manufacturer s standard brackets.
- L. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.
- M. Transformers shall be energy efficient per DOE 2016 standards.

2.4 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.91.
- B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturers written instructions.
- C. Examine walls and floors for suitable mounting conditions where transformers will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.

3.3 CONNECTIONS

- A. Ground equipment according to NFPA-70.
- B. Connect wiring according to "Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturers published torque-tightening values.

3.4 ADJUSTING

B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

END OF SECTION 26 22 00

SECTION 26 24 16 – PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.
 - 3. Load centers.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, accessories, and components indicated.
 - 2. Include dimensions and manufacturers technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.

- 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
- 4. Detail bus configuration, current, and voltage ratings.
- 5. Short-circuit current rating of panelboards and overcurrent protective devices.
- 6. Include evidence of NRTL listing for series rating of installed devices.
- 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 8. Include wiring diagrams for power, signal, and control wiring.
- 9. Key interlock scheme drawing and sequence of operations.
- 10. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - 1. Manufacturers written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 3. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Architect no fewer than two days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Architects written permission.
 - 3. Comply with NFPA 70E.

1.11 WARRANTY

- A. Manufacturers Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 26 05 48.16 "Seismic Controls for Electrical Systems."
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 1.
- E. Comply with NFPA 70.
- F. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Kitchen and Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.
 - 2. Height: 84 inches maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 - 6. Finishes:
 - a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturers standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
- G. Incoming Mains:
 - 1. Location: Convertible between top and bottom.
 - 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

- H. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 - 5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
 - 6. Split Bus: Vertical buses divided into individual vertical sections.
- I. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.
- J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 - 1. Percentage of Future Space Capacity: 20 percent.
- L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have shortcircuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 POWER PANELBOARDS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. <u>General Electric Company; GE Energy Management Electrical Distribution</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.
- D. Mains: As per schedule
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on electronic circuit breakers.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>.
 - 2. <u>General Electric Company; GE Energy Management Electrical Distribution</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: As indicated on the schedules.

- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.
- F. Column-Type Panelboards: Single row of overcurrent devices with narrow gutter extension and overhead junction box equipped with ground and neutral terminal buses.
 - 1. Doors: Concealed hinges secured with multipoint latch with tumbler lock; keyed alike.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Eaton</u>.
 - 2. <u>General Electric Company; GE Energy Management Electrical Distribution</u>.
 - 3. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - 4. <u>Square D; by Schneider Electric</u>.
- B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Multi-button keypad to access programmable functions and monitored data.
 - e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - g. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.

- 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
- 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 7. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
- 8. Subfeed Circuit Breakers: Vertically mounted.
- 9. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Section 26 09 13 "Electrical Power Monitoring and Control."
 - h. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - i. Auxiliary Contacts: Two, SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 - j. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 - k. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 - 1. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
 - m. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
- C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 - 1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 26 28 13 "Fuses."
 - 2. Fused Switch Features and Accessories:
 - a. Standard ampere ratings and number of poles.
 - b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.

2.5 IDENTIFICATION

- A. Panelboard Label: Manufacturers name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
- D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NECA 407.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment,

raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NECA 407.
- D. Equipment Mounting:
 - 1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
 - 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 - 3. Comply with requirements for seismic control devices specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Comply with mounting and anchoring requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."
- G. Mount panelboard cabinet plumb and rigid without distortion of box.
- H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- I. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
 - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturers written instructions.
- J. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- K. Install filler plates in unused spaces.
- L. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- M. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- N. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owners final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Manufacturers Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturers Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- D. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.

- b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
- c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- E. Panelboards will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73.16 "Coordination Studies."
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.
 - 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 - 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 **PROTECTION**

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturers written instructions.

END OF SECTION 26 24 16

SECTION 26 2500 - ISOLATED POWER SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes HOSPITAL ISOLATED power distribution panels, including the following type(s):
 - 1. Isolation Distribution Panels
 - 2. Duplex Isolation Distribution Panels
 - 3. Laser Isolation Distribution Panels
 - 4. Dual Voltage Isolation Distribution Panels

1.2 SCOPE

A. The contractor shall furnish, install, and ensure proper testing and certification of a complete isolated power system, including associated accessories, as indicated on the electrical plans, wiring diagrams, panel schedules, and as specified herein.

1.3 SUBMITTALS

- A. Product Data: Provide dimensions, ratings, operating characteristics, and included accessories.
- B. Installation/Operation Instructions: Provide instructions for handling, installation, and operation of product.

1.4 REFERENCES

- A. NFPA 70 National Electric Code, Article 517
- B. NFPA 99 Health Care Facilities
- C. UL 1022 Line Isolation Monitors
- D. UL 1047 Isolated Power System Equipment
- E. UL 50 Enclosures for Electrical Equipment

1.5 APPROVED MANUFACTURERS

- A. This specification is based on equipment manufactured by PG LifeLink (formerly Post Glover Medical).
- B. Products of other manufacturers will be considered provided they are equal in all respects and request for approval is submitted in writing to the engineer at least 2 weeks prior to the bid date.

PART 2 - PRODUCTS

2.1 ISOLATION DISTRIBUTION PANELS

- A. Provide Isolation Distribution Panels for all operating rooms and other critical procedure areas as indicated on contract drawings. Isolation Distribution Panels are intended to serve medical equipment in a single patient area.
- B. Isolation Distribution Panels shall be a three-piece assembly consisting of: back box, component chassis, and front trim. For ease of installation, component chassis shall be pre-assembled, prewired, and shall contain isolation transformer, Line Isolation Monitor (LIM), primary main and total quantity of factory installed secondary branch circuit breakers as indicated on panel schedule(s).
- C. Panels shall be single-phase with voltage and load ratings as indicated on panel schedule(s).
- D. Enclosure depth shall be a maximum of six inches for units up to 10kVA.
- E. Panels shall be flush mount. Back boxes shall be available for shipment during rough-in construction stage. Pre-wired component chassis and front trim shipped according to construction schedule.
- F. PG LifeLink model IPP panels shall be basis for design.

2.2 DUPLEX ISOLATION DISTRIBUTION PANEL

- A. Provide Duplex Isolation Distribution Panels for all operating rooms and other critical procedure areas as indicated on contract drawings. Duplex Isolation Distribution Panels are intended to serve medical equipment in a single patient area where more than one system is required.
- B. Duplex Isolation Distribution Panels shall contain two independent isolation systems, physically separated by a barrier. Panels shall be pre-assembled and pre-wired, and shall contain two each: isolation transformers, Line Isolation Monitors (LIM), primary mains and two sets of secondary branch circuit breakers factory installed as indicated on panel schedule(s).
- C. Panels shall be single-phase with voltage and load ratings as indicated on panel schedule(s).
- D. Enclosure depth shall be a maximum of six inches for units up to 10kVA for each isolated system.
- E. Panels shall be flush mount. Back boxes shall be available for shipment during rough-in construction stage. Pre-wired component chassis and front trim shipped according to construction schedule.

- F. Where contract drawings call for panels to be installed outside of the room being served, Remote Annunciators connected to the Line Isolation Monitors shall be installed inside the room.
- G. PG LifeLink model IPX panels shall be basis for design.

2.3 LASER ISOLATION DISTRIBUTION PANEL

- A. Provide Laser Isolation Distribution Panels to serve discrete device loads in multiple operating rooms and other critical procedure areas as indicated on contract drawings. Laser Isolation Panels serve 208-240V portable high-power equipment, such as medical lasers in several nearby patient areas from a centrally installed location.
- B. Laser Isolation Distribution Panel device chassis shall be pre-assembled and pre-wired and shall contain: Line Isolation Monitor (LIM), programmable control system, primary main and total quantity of secondary branch circuit breakers and associated contactors as indicated on panel schedule(s).
- C. System shall include contactor control system with programmable lock-out feature to protect against accidental shutdown or overload of primary main circuit breaker.
- D. Panels shall be single-phase with voltage and load ratings as indicated on panel schedule(s).
- E. Panels shall be flush mount. Back boxes shall be available for shipment during rough-in construction stage. Pre-wired component chassis, isolation transformer, and front trim shall be shipped according to construction schedule.
- F. Each branch circuit being served by Laser Isolation Distribution Panel shall include a Laser Outlet Module for connection of equipment loads. Laser Outlet Modules shall be installed inside each procedure room and wired back to associated Laser Distribution Panel and indicated on project drawings. Modules shall include: 8"H x 12"W x 4"D steel backbox, stainless steel front trim panel with hinged door over NEMA . receptacle, door activated control switch, and Remote Annunciator connected to Line Isolation Monitor at associated Laser Isolation Distribution Panel.
- G. PG LifeLink model IPL Panels with DLO-R Laser Outlet Modules shall be basis for design.

2.4 DUAL VOLTAGE ISOLATION DISTRIBUTION PANEL

- A. Provide Dual Voltage Isolation Distribution Panels for all operating rooms and other critical procedure areas as indicated on contract drawings. Dual Voltage panels simultaneously serve both 120V medical equipment and 208-240V portable high-power equipment within a single procedure room from a single panel.
- B. Dual Voltage Isolation Distribution Panels shall contain a single isolation transformer with a single input and dual output windings (120V and 208V). Panels shall be pre-assembled and shall contain two Line Isolation Monitors (LIM), one primary main circuit breaker, and two sets of secondary branch circuit breakers as indicated on panel schedule(s).
- C. Panels shall be single-phase with voltage and load ratings as indicated on panel schedule(s).
- D. Enclosure depth shall be maximum twelve inches.

- E. Panels shall be flush mount. Back boxes shall be available for shipment during rough-in construction stage. Pre-wired component chassis and front trim shipped according to construction schedule.
- F. Where contract drawings call for panels to be installed outside of the room being served, a Remote Annunciator connected to the Line Isolation Monitor shall be installed inside the room.
- G. PG LifeLink model IPD panels shall be basis for design.

2.5 COMPONENTS

A. Enclosure

- 1. Back-box shall be fabricated of galvanized steel in accordance with UL 50 and shall be flush mounted, unless indicated otherwise, at the elevation shown on the plans.
- B. Front Trim
 - 1. The front trim shall be constructed of stainless steel with a # 4 brushed finish, and shall be secured by 1/4-20 stainless steel screws
 - 2. A lockable hinged door shall provide access to operate circuit breakers. The breaker access door shall not obscure the LIM(s) even when open.
 - 3. Front trim shall include a full-length hinge along one side, allowing easy access during testing and maintenance without having to fully remove and realign trim.
 - 4. Hinges shall be concealed type to facilitate regular cleaning/disinfecting of entire trim surface.
 - 5. The maximum temperature rise at the surface of the front trim shall not exceed 30° C above room ambient under full load conditions.

C. Chassis

- 1. All Components within the isolation panel shall be mounted to a removable chassis plate and pre-wired using low leakage type XHHW-2 wire in accordance with UL requirements.
- 2. Barriers shall be included for separation of the incoming grounded primary feeder. Separation shall be maintained between grounded and ungrounded conductors.
- 3. A terminal block shall be provided for connection of remote signal conductors.
- D. Hospital Grade Isolation Transformers
 - 1. The Hospital Isolation Transformer shall be single phase, 60 Hz, with kVA rating, primary voltage, and secondary voltage(s) as indicated on the panel schedules and/or project drawings.
 - 2. The isolation transformer shall be of stacked core design with an electrostatic shield between the primary and secondary windings to prevent direct shorting, and to reduce coupling of harmonic distortions between the windings. The shield shall be grounded to the enclosure. Core and coil shall be varnish impregnated and include a final wrap of insulating material to prevent exposure of bare conductors.
 - 3. Total leakage current to ground from windings shall not exceed the values shown in Table 30.2 of UL Standard 1047.

- 4. The inherent regulation of the isolation transformer at rated input voltage shall be such that the difference between the output voltage at no load and the output voltage at rated current at unity power factor shall not exceed 3% of the output voltage at rated current per UL Standard 1047.
- 5. Transformer temperature rise shall be limited to 115° C above ambient at full load and shall not exceed the values indicated in Table 29.1 of UL 1047 when tested in accordance with UL 1047 Section 29.
- 6. Transformer shall be manufactured using a Class (220)R UL Recognized Insulation System, to thermally protect unit up 220° C.
- 7. Transformer shall be mounted to the enclosure using vibration isolating washers. Maximum design sound level of installed system shall not exceed 35 dBA.
- E. Line Isolation Monitor (LIM)

a.

- 1. Line Isolation Monitor shall continuously monitor the impedance from each isolated conductor to ground and shall display the Total Hazard Current (THC) of the system. The LIM shall be capable of detecting all combinations of resistive and capacitive faults whether they are balanced, unbalanced or hybrid.
- 2. LIM shall meet following performance specifications:

- b. Operating frequency 50/60 Hz
- c. Total Hazard Current (THC) range 0-5mA (user selectable for 0-2mA)
- 3. LIM shall be certified in accordance with UL Standard 1022 and CSA 22.2 No. 204.
- 4. Normal status of the LIM shall be indicated by illumination of a green "Safe" LED. An alarm signal shall be obtained when the Total Hazard Current (THC) reaches a threshold value of not more than 5.0 milliamperes (mA). Alarm state is indicated by illumination of a red "Hazard" LED and by an audible alarm as well. A silence button shall be provided to mute the audible alarm without extinguishing the visual alarm indication. A yellow LED will remain on while LIM is in the silenced mode. The LIM shall automatically reset to normal status when the fault condition is corrected.
- 5. LIM shall provide digital indication of the Isolated Power System's THC in units of mA. Unit shall also include a bar graph type display of THC scaled from 0 to 160% of the LIM's alarm point setting.
- 6. A momentary test switch shall be provided on the face of the LIM for periodic manual testing/calibration of the unit, as well as verification that all indicators and meters are operational. In addition, LIM shall automatically initiate a regularly scheduled self-test/calibration sequence at least once per day. Frequency of self-test shall be configurable by user in increments of 1 to 24 hours.
- 7. LIM shall contain a 2-Line (20 characters each row) LCD user interface screen that clearly displays the unit's current operating status, measured line-to-line voltage, present time, logged alarm data, and all user-configurable system settings.
- 8. The LIM shall signal an alarm if it detects that its connection to the isolation panel's reference ground bus is disconnected.
- 9. LIM shall include a wiring harness assembly for connection of remote mounted alarm annunciator unit(s).

- 10. In addition to driving optional remote annunciators, LIM shall include a SPDT relay contact for use with external alarm systems.
- 11. The PG LifeLink model Mark V shall be the basis for design.
- F. Circuit Breakers
 - 1. A main circuit breaker shall be provided on the primary line side of the isolation transformer. Breaker shall be 2-pole, thermal magnetic type, with minimum 10,000 AIC. Breaker shall be sized according to transformer voltage and kVA rating.
 - 2. All branch circuit breakers shall be factory installed in isolation panel based on quantities and ratings shown on project panel schedule(s). Branch circuit breakers shall be 2-pole, bolt-on type only, with thermal magnetic trip and minimum 10,000 AIC. Maximum 16 each per isolation transformer.
 - 3. All panelboard busbars shall be copper.
 - 4. Isolated Power Panel shall accommodate panelboards/breakers manufactured by Eaton, General Electric, Siemens, and Schneider Electric.

PART 3 - INSTALLATION

3.1 ASSEMBLY

A. Contractor shall review and follow all manufacturer's recommendations for proper handling, mounting, assembly, and wiring of equipment.

3.2 WIRING

- A. All energized branch circuit conductors of the isolated power system shall be stranded copper having a cross-linked polyethylene insulation, or equivalent with a dielectric constant of 3.5 or less. Type XHHW-2, 90°C is suitable for this purpose. Each branch circuit conductor shall be color-coded in accordance with NFPA 70 - National Electrical Code – Article 517.160. Isolated conductor L1 shall be orange and conductor L2 shall be brown. Each branch circuit conductor shall also contain a distinctive colored stripe (other than white, green, or gray) along the entire length of the wire.
- B. Equipment grounding conductors shall be installed with each branch circuit in accordance with bonding requirements found in NFPA 70 National Electrical Code Article 517. Equipment grounding conductors shall be insulated type and green in color.
- C. Wire pulling compound adversely affects the dielectric constant of conductor insulation and shall not be used when pulling the wire of the isolated power system. Use of dry talcum powder is permitted. No more than six wires in a ³/₄" conduit will be allowed.
- D. Minimize length of conductor runs to the greatest extent possible to decrease accumulated leakage current. With all branch circuit wiring installed, system must be capable of passing minimum wiring impedance test requirement per NFPA 99 Section 6.3.2.6.2 (2012 Edition).

3.3 TEST AND CERTIFICATION

- A. Contractor shall include the cost of and make all arrangements for testing of installed Isolation Panels by a qualified factory technician provided by the manufacturer of isolation systems.
- B. Upon completion of the installation, the qualified factory technician shall inspect and test the equipment to verify that it is properly installed and operating as specified. All inspections and testing required by NFPA 99 Section 6.3.2.6 (2012 Edition) shall be performed.
- C. A field test report and written certification that the system was installed and operating properly shall be furnished. The factory technician shall also instruct the hospital personnel in the proper use and maintenance of the equipment.

END OF SECTION 26 25 00

INTENTIONALLY LEFT BLANK

SECTION 26 27 26 – WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Single and duplex receptacles, ground-fault circuit interrupters and isolatedground receptacles.
 - 2. Single- and double-pole snap switches.
 - 3. Device wall plates.
 - 4. Pin and sleeve connectors and receptacles.
 - 5. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. PVC: Polyvinyl chloride.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. Receptacles, switches, plates, floor outlets, poke through assemblies, service poles and multioutlet assemblier.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain each type of wiring device through one source from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70 latest edition or edition enforced by state or local code authority.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Outlets Duplex:
 - a. Hubbell Incorporated- HBL 5362.
 - b. Leviton Mfg. Company Inc.-5362.
 - c. Pass & Seymour-CRB5362.
 - d. Pass & Seymour -PT5362A (Plug Tail Device).
 - 2. Outlets Duplex: Hospital Grade
 - a. Hubbell Incorporated- HBL 8300.
 - b. Leviton Mfg. Company Inc.-8300
 - c. Pass & Seymour-PS8300.
 - d. Pass & Seymour -PT8300.
 - 3. Switches-Single Pole:
 - a. Hubbell- HBL 1221.
 - b. Pass & Seymour PS20AC1.
 - c. Leviton Mfg. Company, Inc.- 1221-1
 - 4. Switches-Three Pole:
 - a. Hubbell- HBL1223
 - b. Leviton Mfg. Company, Inc.-1223-2.
 - c. Pass & Seymour-PS20AC3.
 - 5. Dimmer Switches Line Voltage:
 - a. Lutron Nova T
 - b. Pass & Seymour CD2000

* Dimmer must be compatible with Ballast or LED Driver.

- 6. Dimmer Switches 0-10V:
 - a. Synergy ISD
 - b. Cooper SF10P
- * Dimmer must be compatible with Ballast or LED Driver.
- 7. GFI Receptacles: Weather Resistant:
 - a. Hubbell Incorporated- BR20WR
 - b. Leviton Mfg. Company Inc.-WBR20
 - c. Pass & Seymour- WR5362.
- 8. GFI Receptacles: Weather Resistant and Tamper Resistant:
 - a. Hubbell Incorporated- BR2WRTR.
 - b. Leviton Mfg. Company Inc.-TWR20
 - c. Pass & Seymour- WR20TR.
- 9. GFI Receptables: Hospital Grade
 - a. Hubbell Incorporated GF8300
 - b. Leviton Mfg. Company, Inc. GF8300
 - c. Pass & Seymour = TR63H
- 10. Receptacles: Tamper Resistant
 - a. Hubbell Incorporated- BR20TR.
 - b. Leviton Mfg. Company Inc.-TWR20
 - c. Pass & Seymour- TR5362.
- 11. Receptables Tamper Resistant: Hospital Grade
 - a. Hubbell-8300SG
 - b. Leviton Mfg. Company, Inc. 8300SG
 - c. Pass & Seymour TR63H

2.2 RECEPTACLES

- A. Straight-Blade-Type Receptacles: Comply with UL 498, 20 amp.
- B. Straight-Blade and Locking Receptacles: Heavy-Duty grade 20 amp.
- C. GFCI Receptacles: Straight blade, feed-through type, Heavy-Duty grade, with integral NEMA WD 6, Configuration 5-20R duplex receptacle; complying with UL 498 and UL 943. Design units for installation in a 2-3/4-inch- (70-mm-) deep outlet box without an adapter.
- D. Hospital grade in all patient locations.
- E. Hospital grade and tamper resistant in all pediatric and public areas. GFI receptacles do not have to be tamper resistant.

2.3 CORD AND PLUG SETS

- A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent.
 - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.4 SWITCHES

- A. Single- and Double-Pole Switches: Comply with UL 20, 20 amp.
- B. Snap Switches: Heavy-Duty grade, quiet type 20 amp, 120/277 volt.
- C. Live Voltage Dimmer: 120V, 2000 watt, slide to-off. Dimmer must be compatible with ballast or driver.
- D. 0-10V Dimmer: 120/277VAC, capable of three way, max wattage 1200 w 120VAC, 150000 277 VAC, Dimmer must be compatible with ballast or driver. 100% to 1% continuous.
- 2.5 WALL PLATES
 - A. Single and combination types to match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: As selected by Architect.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Wet Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."

2.6 POKE-THROUGH ASSEMBLIES

- A. Description: Factory-fabricated and -wired assembly of below-floor junction box with multi-channeled, through-floor raceway/firestop unit and detachable matching floor service outlet assembly.
- 1. Service Outlet Assembly: Recessed type with three (3) compartments that allow for up to three (3) duplex receptacles and/or 12 communication ports and/or 10 AV devices.
- 2. Size: Selected to fit nominal 6-inch (100-mm) cored holes in floor and matched to floor thickness.

- 3. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
- 4. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors; and a minimum of four, 4-pair, Category 6 voice and data communication cables.

2.7 FINISHES

- A. Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70.2.
 - 2. Wiring Devices Connected to Emergency Power System: Red.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install devices and assemblies level, plumb, and square with building lines.
- B. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical, and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- C. Remove wall plates and protect devices and assemblies during painting.
- D. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.
- E. Install weather resistant receptacles in damp and wet locations per N.E.C. requirements.
- F. Install tamper resistant receptacles in homes, apartments, hotel rooms and daycares per N.E.C. requirements.

3.2 CONNECTIONS

- A. Ground equipment according to Division 16 Section "Grounding and Bonding."
- B. Connect wiring according to Division 16 Section "Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturers published torque-tightening values.

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. After installing wiring devices and after electrical circuitry has been energized, test for proper polarity, ground continuity, and compliance with requirements.
 - 2. Test GFCI operation with both local and remote fault simulations according to manufacturers written instructions.
- B. Remove malfunctioning units, replace with new units, and retest as specified above.

END OF SECTION 26 27 26

SECTION 26 28 13 – FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Cartridge fuses rated 600 V and less for use in switches.

1.3 SUBMITTALS

- A. Product Data: Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturers technical data on features, performance, electrical characteristics, and ratings.
 - 2. Fuse size for elevator feeders and elevator disconnect switches.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturers ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ferraz Shawmut, Inc.
 - 2. Little Fuse.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.
- B. End Caps: End caps shall be capable of being tested if fuse is blown.
- C. Indicating Feature: Fuse shall have an indicating feature which clearly indicates when fuse is blown.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Motor Branch Circuits: Class RK1, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels indicating fuse replacement information on inside door of each fused switch.

END OF SECTION 26 28 13

INTENTIONALLY LEFT BLANK

SECTION 26 28 16 – ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes individually mounted enclosed switches and circuit breakers used for the following:
 - 1. Feeder and branch-circuit protection.
 - 2. Motor and equipment disconnecting means.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. RMS: Root mean square.
- C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

- A. Product Data: For each type of switch, circuit breaker, accessory, and component indicated. Include dimensions and manufacturers technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each switch and circuit breaker.
 - 1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Current and voltage ratings.
 - c. Short-circuit current rating.
 - d. UL listing for series rating of installed devices.

- e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 2. Wiring Diagrams: Power, signal, and control wiring. Differentiate between manufacturer-installed and field-installed wiring.
- 3. Qualification Data: Submit data for testing agencies indicating that they comply with qualifications specified in "Quality Assurance" Article.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70- Latest edition or edition enforced by state and local code authority.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.6 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Fusible Switches:
 - a. Eaton Corp.; Cutler-Hammer Products, K-Series.
 - b. General Electric Co.; Electrical Distribution & Control Division, TH.
 - c. Siemens Energy & Automation, Inc., VBII.
 - d. Square D Co, 3110.

2.2 ENCLOSED SWITCHES

A. Enclosed, Nonfusible Switch: NEMA KS 1, Type HD, with lockable handle.

B. Enclosed, Fusible Switch, 800 A and Smaller: NEMA KS 1, Type HD, with clips to accommodate specified fuses, lockable handle with two padlocks, and interlocked with cover in closed position.

2.3 ENCLOSURES

- A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

2.4 FACTORY FINISHES

A. Manufacturers standard prime-coat finish ready for field painting.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in "Basic Electrical Materials and Methods."
- B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.
- C. If the disconnect or enclosed circuit breaker is used as a Main Service Disconnect then the maximum available fault current shall be listed on the device to meet the requirements of NFPA 70:110.24. The labeling shall be engraved plastic. The maximum available fault current shall be obtained from the electrical utility for the secondary side of the utility transformer.

3.3 CONNECTIONS

- A. Install equipment grounding connections for switches and circuit breakers with ground continuity to main electrical ground bus.
- B. Install power wiring. Install wiring between switches and circuit breakers, and control and indication devices.

- C. Tighten electrical connectors and terminals according to manufacturer s published torquetightening values.
- D. Maintain all necessary clearances per NFPA-70.

3.4 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each enclosed switch, circuit breaker, component, and control circuit.
 - 2. Test continuity of each line- and load-side circuit.

3.5 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.6 CLEANING

A. On completion of installation, inspect interior and exterior of enclosures. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION 26 28 16

SECTION 26 43 13 – SURGE PROTECTION DEVICE FOR SERVICE ENTRANCE AND BRANCH PANELS

PART 1 - GENERAL

1.1 DESCRIPTION/SCOPE

- A. The Surge Protection Device (SPD) covered under this section includes all service entrance type surge protection devices suitable for use as Type 1 or Type 2 devices per UL1449 4th Edition, applied to the line or load side of the utility feed inside the facility.
- B. A SPD located at Service Entrance and Distribution and Branch Panels, Switchgear, Motor Control Centers, and Switchboard assemblies as indicated on the drawings.
- C. Contractor shall provide all labor, materials, equipment and incidentals as shown, specified and required to finish and install surge protection devises.

1.2 QUALITY ASSURANCE

- A. Reference Standard: Comply with the latest edition of the applicable provisions and recommendations of the following, except as otherwise stated in this document:
 - 1. UL 1449 4th Edition.
 - 2. UL 1283.
 - 3. ANSI/IEEE C62.41, Recommended Practice for Surge Voltages in Low-Voltage AC Power Circuits.
 - 4. ANSI/IEEE C62.45, Guide for Surge Testing for equipment connected to Low-Voltage AC Power Circuits.
 - 5. UL96A
 - 6. IEEE 1100 Emerald Book.
 - 7. National Fire Protection Association (NFPA 70: National Electrical Code).

1.3 SUBMITTALS/QUALITY ASSURANCE – SUBMIT THE FOLLOWING:

- A. Package must include shop drawings complete with all technical information, unit dimensions, detailed installation instructions, maintenance manual, recommended replacement parts list and wiring configuration.
- B. Copies of Manufacturer's catalog data, technical information and specifications on equipment proposed for use.

- C. Copies of documentation stating that the Surge Protection Device is listed by UL to UL1449 4th Edition, category code VZCA.
- D. Copies of actual let through voltage data in the form of oscillograph results for both ANSI/IEEE C62.41 Category C3 (combination wave) and B3 (Ring wave) tested in accordance with ANSI/IEEE C6245.
- E. Copies of Noise Rejection testing as outlined in NEMA LS1-1992 (R2000) Section 3.11. Noise rejection is to be measured between 50 kHz and 100 MHz verifying the devices noise attenuation. Must show multiple attenuation levels over a range of frequencies.
- F. Copies of test reports from a recognized independent testing laboratory, capable of producing 200kA surge current waveforms, verifying the suppressor components can survive published surge current rating on a per mode basis using the ANSI/IEEE C62.41 impulse waveform C3 (8 x 20 microsecond, 20kV/10kA). Test data on an individual module is not acceptable.
- G. Copy of warranty statement clearly establishing the terms and conditions to the building/facility owner/operator.

PART 2 - PRODUCTS

2.1 APPROVED MANUFACTURER FOR <u>*TYPE C SPD's for Service Entrance Application:*</u>

- A. Current Technology Transguard3 or TG3 Series **150kA** per mode surge rating or ASCO 560 series.
- B. Approved equivalent. Submission package must be received by engineer 2 weeks prior to bid date shall fully comply with all performance characteristics included in this specification.

2.2 MANUFACTURED UNITS/ ELECTRICAL REQUIREMENTS

- A. Refer to drawing for operating voltage, configuration and surge current capacity per mode for each location, or you may list locations and information here.
- B. Declared Maximum Continuous Operating Voltage (MCOV) shall be greater than 115 percent of the nominal system operating voltage and in compliance with test and evaluation procedures outlined in the nominal discharge surge current test of UL1449 4th Edition, section 37.7.3. MCOV values claimed based on the component's value or on the 30-minute 115% operational voltage test, section 38 in UL1449 will not be accepted.
- C. Unit shall have no more than 10% deterioration or degradation of the UL1449 4th Edition Voltage Protection Rating (VPR) when exposed to a minimum of 5,000 repeated category C3 (20kV/10kA) surges. The SPD manufacturer must provide a test report validating the repetitive surge test was performed.

D. Protection Modes UL1449 4th Edition VPR(6kV, 3kA) for grounded WYE/delta and High Leg Delta circuits with voltages of (480Y/277), (208Y/120), (600Y/347). 3-Phase, 4 wire circuits, (120/240) split phase shall be as follows and comply with test procedures outlined in UL1449 4th Edition section 37.6:

			B3	C3 Comb.	UL 1449
System			Ringwave	Wave 20kV,	Third Edition
Voltage	Mode	MCOV	6kV, 500A	10kA	VPR Rating
120/240, 120/208	L-N	150	490	980	700
	L-G	150	570	980	700
	N-G	150	640	1170	700
	L-L	300	500	1600	1200
277/480	L-N	320	450	1420	1200
	L-G	320	540	1540	1200
	N-G	320	570	1600	1000
	L-L	552	530	2600	2000

- E. Electrical Noise Filter- each unit shall include a high performance EMI/RFI noise rejection filter with a maximum attenuation of 54dB per MIL-STD-220B.
 - 1. SPD shall include an EMI/RFI noise rejection filter for all L-N modes as well as a removable filter in the N-G mode.
- F. Integral Disconnect Switch (IF REQUIRED)
 - 1. The device shall have an optional NEMA compliant safety interlocked integral disconnect switch with an externally mounted metal manual operator.
 - 2. The switch shall disconnect all ungrounded circuit conductors from the distribution system to enable testing and maintenance without interruption to the facility's distribution system.
 - 3. The switch shall be rated for 600Vac.
 - 4. The SPD device shall be tested to UL1449 4th Edition listed with the integral disconnect switch and the UL1449 VPR ratings shall be provided.
 - 5. The integral disconnect switch shall be capable of withstanding, without failure, the published maximum surge current magnitude without failure or damage to the switch.
 - 6. The line side of the integral disconnect shall be blocked off so that when the SPD is opened there is no direct access to the voltage present on the line side of the disconnect.
- G. The UL1449 Voltage Protective Rating (VPR) shall be permanently affixed to the SPD unit.
- H. The UL1449 Nominal Discharge Surge Current Rating shall be 20Ka
- I. The SCCR rating of the SPD shall be 200kAIC without the need for upstream over current protection.
- J. The SPD shall be listed as Type1 SPD, suitable for use in Type1 or Type2 applications.

- K. The SPD shall have the following monitoring options.
 - 1. Time Date stamp, duration and magnitude for the following power quality events (sags, swells, surges, dropouts, outages, THD, frequency, Volts RMS per phase)
 - 2. SPD monitoring shall track surge protection and display it as a percentage
 - SPD shall provide a surge counter with three categories to be defined as Low Level surge (100A-500A) Medium Level surge (500A-3,000A) High Level surge (>3,000A)
 - 4. Remote communications via ModBus or Ethernet

2.3 APPROVED MANUFACTURER FOR <u>TYPE B SPD's for Branch Panel Application:</u>

- A. Current Technology Transguard3 or TG3 Series 50 kA per mode surge rating or ASCO 560 series.
- B. Approved equivalent. Submission package must be received by engineer 2 weeks prior to bid date shall fully comply with all performance characteristics included in this specification.

2.4 MANUFACTURED UNITS/ ELECTRICAL REQUIREMENTS

- A. Refer to drawing for operating voltage, configuration and surge current capacity per mode for each location, or you may list locations and information here.
- B. Declared Maximum Continuous Operating Voltage (MCOV) shall be greater than 115 percent of the nominal system operating voltage and in compliance with test and evaluation procedures outlined in the nominal discharge surge current test of UL1449 4th Edition, section 37.7.3. MCOV values claimed based on the component's value or on the 30-minute 115% operational voltage test, section 38 in UL1449 will not be accepted.
- C. Unit shall have no more than 10% deterioration or degradation of the UL1449 4th Edition Voltage Protection Rating (VPR) when exposed to a minimum of 5,000 repeated category C3 (20kV/10kA) surges. The SPD manufacturer must provide a test report validating the repetitive surge test was performed.
- D. Protection Modes UL1449 4th Edition VPR(6kV, 3kA) for grounded WYE/delta and High Leg Delta circuits with voltages of (480Y/277), (208Y/120), (600Y/347). 3-Phase, 4 wire circuits, (120/240) split phase shall be as follows and comply with test procedures outlined in UL1449 4th Edition section 37.6:

			B3	C3 Comb.	UL 1449
System			Ringwave	Wave 20kV,	Third Edition
Voltage	Mode	MCOV	6kV, 500A	10kA	VPR Rating
120/240,	L-N	150	490	980	700
120/208	L-G	150	570	980	700
	N-G	150	640	1170	700
	L-L	300	500	1600	1200
277/480	L-N	320	450	1420	1200
	L-G	320	540	1540	1200
	N-G	320	570	1600	1000
	L-L	552	530	2600	2000

- E. Electrical Noise Filter- each unit shall include a high performance EMI/RFI noise rejection filter with a maximum attenuation of 54dB per MIL-STD-220B.
 - 1. SPD shall include an EMI/RFI noise rejection filter for all L-N modes as well as a removable filter in the N-G mode.
- F. Integral Disconnect Switch (IF REQUIRED)
 - 1. The device shall have an optional NEMA compliant safety interlocked integral disconnect switch with an externally mounted metal manual operator.
 - 2. The switch shall disconnect all ungrounded circuit conductors from the distribution system to enable testing and maintenance without interruption to the facility's distribution system.
 - 3. The switch shall be rated for 600Vac.
 - 4. The SPD device shall be tested to UL1449 4th Edition listed with the integral disconnect switch and the UL1449 VPR ratings shall be provided.
 - 5. The integral disconnect switch shall be capable of withstanding, without failure, the published maximum surge current magnitude without failure or damage to the switch.
 - 6. The line side of the integral disconnect shall be blocked off so that when the SPD is opened there is no direct access to the voltage present on the line side of the disconnect.
- G. The UL1449 Voltage Protective Rating (VPR) shall be permanently affixed to the SPD unit.
- H. The UL1449 Nominal Discharge Surge Current Rating shall be 20kA
- I. The SCCR rating of the SPD shall be 200kAIC without the need for upstream over current protection.
- J. The SPD shall be listed as Type1 SPD, suitable for use in Type1 or Type2 applications.
- K. The SPD shall have the following monitoring options available.
 - 1. Time Date stamp, duration and magnitude for the following power quality events (sags, swells, surges, dropouts, outages, THD, frequency, Volts RMS per phase)
 - 2. SPD monitoring shall track surge protection and display it as a percentage
 - 3. SPD shall provide a surge counter with three categories to be defined as

Low Level surge (100A-500A) Medium Level surge (500A-3,000A) High Level surge (>3,000A)

4. Remote communications via ModBus or Ethernet

PART 3 - EXECUTION/INSTALLATION

- 3.1 STARTUP The SPD manufacturer's technician shall perform a system checkout and start-up in the field to assure proper installation, operation and to initiate the warranty of the system. The technician will be required to do the following:
 - A. Verify voltage clamping levels utilizing a diagnostic test kit, comparing factory readings to installed readings.
 - B. Verify N-G connection.
 - C. Record information to a product signature card for each product installed.
- 3.2 Unit may be installed on either the line or load side of the main service disconnect. If installed on the line side unit shall be installed with an integral disconnect. If installed on the load side the unit shall be installed on the largest breaker size available. If installed lead length exceeds 5' installer shall use a low impedance (HPI) cable to reduce the lead lengths effect on the installed performance of the SPD.

PART 4 - PRODUCT WARRANTY

- 4.1 Warranty on defective material and workmanship shall be for 15 years.
- 4.2 Copy of Warranty to be sent with submittal.

END OF SECTION 26 43 13

Cath Lab Room 1 Equipment Replacement

SECTION 26 43 13 – SURGE PROTECTION DEVICE FOR SERVICE ENTRANCE AND BRANCH PANELS

INTENTIONALLY LEFT BLANK
SECTION 26 51 00 – INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, apply to this Section.

1.2 REFERENCES

- A. ANSI/NFPA 70, National Electrical Code
- B. IEEE C62.41, Guide on the Surge Environment in Low-Voltage (1000 V and Less) AC Power Circuits
- C. FCC 47 CFR Part 15, Federal Code Of Regulation (CFR) testing standard for electronic equipment
- D. IESNA LM-79, Electrical and Photometric Measurements of Solid-State Lighting Products
- E. IESNA LM-80, Approved Method for Measuring Lumen Maintenance of LED Light Sources
- F. UL1598, Standard for Safety of Luminaires
- G. NEMA SSL 3-2010, High-Power White LED Binning for General Illumination

1.3 SUMMARY

A. This Section includes interior lighting fixtures, lighting fixtures mounted on exterior building surfaces, lamps, ballasts, emergency lighting units, and accessories.

1.4 SUBMITTALS

- A. Product Data: For each type of lighting fixture indicated, arranged in order of fixture designation. Include data on features, accessories, and the following:
 - 1. Dimensions of fixtures.
 - 2. Certified results of independent laboratory tests for fixtures and lamps for electrical ratings and photometric data.
 - 3. Certified results of laboratory tests for fixtures and lamps for photometric performance.
 - 4. Emergency lighting unit battery and charger.
 - 5. Fluorescent and high-intensity-discharge ballasts.
 - 6. Types of lamps.

- B. Shop Drawings: Show details of nonstandard or custom fixtures. Indicate dimensions, weights, method of field assembly, components, features, and accessories.
 - 1. Wiring Diagrams: Detail wiring for fixtures and differentiate between manufacturerinstalled and field-installed wiring.
- C. Submit product data on luminaires. Product data to include, but not limited to materials, finishes, approvals, photometric performance, and dimensional information.
- D. Maintenance Data: For lighting fixtures to include in maintenance manuals specified in the front end documents.

1.5 DRAWINGS

- A. The drawings, which constitute a part of these specifications, indicate the general location of the luminaires. Data presented on these drawings is as accurate as preliminary surveys and planning can determine until final equipment selection is made. Accuracy is not guaranteed and field verification of all dimensions, routing, etc., is required.
- B. Photometric layout shall meet or exceed the criteria of the fixtures indicated on drawings.

1.6 QUALITY ASSURANCE

- A. Fixtures, Emergency Lighting Units, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- B. Comply with NFPA 70- Latest edition or edition enforced by state and local code authority.
- C. NFPA 101 Compliance: Comply with visibility and luminance requirements for exit signs.
- A. LED Luminaires
 - 1. Manufactures of LED luminaires shall demonstrate a suitable testing program incorporating high heat, high humidity and thermal shock test regimens to ensure system reliability and to substantiate lifetime claims.
 - 2. The use of IESNA LM-80 data to predict luminaire lifetime is not acceptable.
 - 3. At time of manufacture, electrical and light technical properties shall be recorded for each luminaire. At a minimum, this should include lumen output, CCT, and CRI. Each luminaire shall utilize a unique serial numbering scheme. Technical properties must be made available for a minimum of 5 years after the date of manufacture.
 - 4. Luminaires shall be provided with a 5 year warranty covering, LEDs, drivers, paint and mechanical component.

1.7 COORDINATION

A. Fixtures, Mounting Hardware, and Trim: Coordinate layout and installation of lighting fixtures with ceiling system and other construction.

1.8 WARRANTY

A. General Warranty: The contractor shall warranty all work for one year after acceptance of project.

PART 2 - PRODUCTS

2.2 MANUFACTURERS

- A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the products indicated in the Fixture schedule on the drawings. Manufacture shall submit for prior approval where required at least (10) days prior to bid.
- B. Subject to compliance with these specifications, luminaires shall be as manufactured by manufacture indicated on the drawings or prior approved equivalent.

2.3 FIXTURES AND FIXTURE COMPONENTS, GENERAL

- A. Metal Parts: Free from burrs, sharp corners, and edges.
- B. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free from light leakage under operating conditions, and arranged to permit relamping without use of tools. Arrange doors, frames, lenses, diffusers, and other pieces to prevent accidental falling during relamping and when secured in operating position.

2.4 FLUORESCENT LAMP BALLASTS

- A. General Requirements: Unless otherwise indicated, features include the following:
 - 1. Designed for type and quantity of lamps indicated at full light output.
 - 2. Total Harmonic Distortion Rating: Less than 10 percent.
 - 3. Sound Rating: A.
- B. Electronic Ballasts for Linear Lamps: Unless otherwise indicated, features include the following, besides those in "General Requirements" Paragraph above:

- 1. Encapsulation: Without voids in potting compound.
- 2. Parallel Lamp Circuits: Multiple lamp ballasts connected to maintain full light output on surviving lamps if one or more lamps fail. Multiple lamp ballasts shall comply with ANSI C 82.11 and shall be connected to maintain full light output on surving lamps if one or more lamps fail.
- 3. Operating Frequency: Ballast shall be high frequency electronic type and operate lamps at a frequency between 42 kHz and 52 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 4. Ballast shall provide Independent Lamp Operation (ILO) for Programmed Start ballasts allowing remaining lamp(s) to maintain full light output when one or more lamps fail. Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 5. Ballast shall operate from 60 Hz input source of 120V through 277V or 347V as applicable with sustained variations of $\pm 10\%$ (voltage and frequency).
- 6. Ballast starting voltage shall be equal to or greater than 550v.
- C. Ballasts for Compact Lamps in Recessed Fixtures: Unless otherwise indicated, additional features include the following:
 - 1. Type: Electronic or electromagnetic, fully encapsulated in potting compound.
 - 2. Power Factor: 90 percent, minimum.
 - 3. Operating Frequency: 20 kHz or higher. 42 kHz or higher.
 - 4. Flicker: Less than 5 percent.
 - 5. Lamp Current Crest Factor: Less than 1.7.

2.5 EXIT SIGNS

- A. Internally Lighted Signs: As follows:
 - 1. Lamps for AC Operation: Light-emitting diodes, 70,000 hours minimum rated lamp life.

2.6 LAMPS

- A. Fluorescent Color Temperature and Minimum Color-Rendering Index: Refer to drawings.
- B. 4 foot lamps shall be 28 watt, 68,000 rated life 12 hour on with instant start ballast and 90,000
 12 hour on with programmable start. Initial lumens 2650, minimum CRI of 82 and a 96% lumen maintenance. Approved lamp is Philips Energy Advantage.
- C. All fluorescent lamps shall be low mercury.

2.7 LED LUMINAIRES

A. General: Except as otherwise indicated, provide LED luminaires, of types and sizes indicated on fixture schedules.

- B. Material and specifications for each luminaire are as follows:
 - 1. Each luminaire shall consist of an assembly that utilizes LEDs as the light source. In addition, a complete luminaire shall consist of a housing, LED array, and electronic driver (power supply)
 - 2. Each luminaire shall be rated for a minimum operational life of 50,000 hours and to LM-70 lumen depreciation standards. This life rating must be conducted 40C ambient temperature.
 - 3. The rated operating temperature range shall be -30° C to $+40^{\circ}$ C.
 - 4. Each luminaire is capable of operating above 100°F [37°C], but not expected to comply with photometric requirements at elevated temperatures.
 - 5. Photometry must be compliant with IESNA LM-79 and shall be conducted at 25°C ambient temperature.
 - 6. The individual LEDs shall be constructed such that a catastrophic loss or the failure of one LED will not result in the loss of the entire luminaire.
 - 7. Luminare shall be constructed such that LED modules may be replaced or repaired without replacement of whole luminaire.
 - 8. Each luminaire shall be listed with Underwriters Laboratory, Inc. under UL1598 for luminaires, or an equivalent standard from a nationally recognized testing laboratory.
- C. Technical Requirements
 - 1. Electrical
 - a. Power Consumption: Maximum power consumption allowed for the luminaire shall be determined by application. The luminaire shall not consume power in the off state.
 - b. Operation Voltage: The luminaire shall operate from a 60 HZ \pm 3 HZ AC line over a voltage ranging from 108 VAC to 305 VAC. The fluctuations of line voltage shall have no visible effect on the luminous output.
 - c. Power Factor: The luminaire shall have a power factor of 0.90 or greater.
 - d. THD: Total harmonic distortion (current and voltage) induced into an AC power line by a luminaire shall not exceed 20 percent.
 - e. Each Luminaire shall have UL Listed Class II power supplies. Class I power supplies will not be acceptable.
 - f. Operational Performance: The LED circuitry shall prevent visible flicker to the unaided eye over the voltage range specified above.
 - g. RF Interference: LED Drivers must meet Class A emission limits referred in Federal Communications Commission (FCC) Title 47, Subpart B, Section 15 regulations concerning the emission of electronic noise.
 - h. Drivers shall have a Class A sound rating
 - 2. Thermal Management
 - a. The thermal management (of the heat generated by the LEDs) shall be of sufficient capacity to assure proper operation of the luminaire over the expected useful life.
 - b. The LED manufacturer's maximum thermal pad temperature for the expected life shall not be exceeded.
 - c. Thermal management shall be passive by design. The use of fans or other mechanical devices shall not be allowed.
 - d. The luminaire shall have a minimum heat sink surface such that LED manufacturer's maximum junction temperature is not exceeded at maximum rated ambient temperature.

e. The heat sink material shall be aluminum

2.8 FIXTURE SUPPORT COMPONENTS

- A. Comply with "Basic Electrical Materials and Methods," for channel- and angle-iron supports and nonmetallic channel and angle supports.
- B. Rod Hangers: 3/16-inch- (5-mm-) minimum diameter, cadmium-plated, threaded steel rod.
- C. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
- D. Aircraft Cable Support: Use cable, anchorages, and intermediate supports recommended by fixture manufacturer.

2.9 FINISHES

- A. Fixtures: Manufacturer standard, unless otherwise indicated.
 - 1. Paint Finish: Applied over corrosion-resistant treatment or primer, free of defects.
 - 2. Metallic Finish: Corrosion resistant.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixtures: Set level, plumb, and square with ceiling and walls, and secure according to manufacturers written instructions and approved submittal materials. Install lamps in each fixture.
- B. Support for Fixtures in or on Grid-Type Suspended Ceilings: Use grid for support.
 - 1. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches (150 mm) from fixture corners.
 - 2. Fixtures of Sizes Less Than Ceiling Grid: Arrange as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
- C. Suspended Fixture Support: As follows:
 - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.

3.2 CONNECTIONS

- A. Ground equipment.
 - 1. Tighten electrical connectors and terminals according to manufacturer s published torquetightening values.

3.3 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Provide instruments to make and record test results.
- C. Tests: As follows:
 - 1. Verify normal operation of each fixture after installation.
 - 2. Emergency Lighting: Interrupt electrical supply to demonstrate proper operation.
 - 3. Verify normal transfer to emergency source and retransfer to normal.
 - 4. Report results in writing.
- D. Malfunctioning Fixtures and Components: Replace or repair, then retest. Repeat procedure until units operate properly.
- E. Corrosive Fixtures: Replace during warranty period.

3.4 CLEANING AND ADJUSTING

A. Clean fixtures internally and externally after installation. Use methods and materials recommended by manufacturer.

END OF SECTION 26 51 00

INTENTIONALLY LEFT BLANK